Study of LTPP Laboratory Resilient Modulus Test Data and Response Characteristics: Final Report

PUBLICATION NO. FHWA-RD-02-051

OCTOBER 2002

U.S. Department of Transportation

Federal Highway Administration

LTPP

Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296 **Technical Report Documentation Page**

	1 Chillical P	ical Report Documentation Lage			
1. Report No. FHWA-RD-02-051	2. Government Accession No.	3. Recipient's Catalog No.			
	ent Modulus Test Data and Response	5. Report Date October 2002			
Characteristics		6. Performing Organization Code			
7. Author(s) Amber Yau and Harold L. Von Q	uintus	8. Performing Organization Report No. 3032.1			
9. Performing Organization Name and Address Fugro-BRE, Inc. 8613 Cross Park Drive Austin, TX 78754		10. Work Unit No. (TRAIS) C6B			
		11. Contractor Grant No. DTFH61-95-C-00028			
12. Sponsoring Agency Name and Address Office of Infrastructure Research and Development Federal Highway Administration 6300 Georgetown Pike McLean, Virginia 22101		13. Type of Report and Period Covered June 2000-October 2001 Final Report			
		14. Sponsoring Agency Code HCP 30-C			

15. Supplementary Notes

Contracting Officer's Technical Representative (COTR): Cheryl Allen Richter, HRDI-13

16. Abstract

The resilient modulus of every unbound structural layer of the Long Term Pavement Performance (LTPP) Specific Pavement and General Pavement Studies Test Sections is being measured in the laboratory using LTPP test protocol P46. A total of 2,014 resilient modulus tests have passed all quality control checks and are included in the LTPP database with a Level E data status. As of October 2000, there were 1,639 resilient modulus tests yet to be performed. In some cases, these missing tests may have been performed, but did not achieve a Level E status (did not pass all quality control checks) in the LTPP database. However, these test results have not been evaluated in detail. This report documents the first comprehensive review and evaluation of the resilient modulus test data measured on pavement materials and soils recovered from the LTPP test sections.

The resilient modulus data were reviewed in detail to identify anomalies or potential errors in the database. From this review, a total of 185 resilient modulus tests were identified with possible problems or data entry errors. These tests were reported to FHWA for further review and/or retesting. The resilient modulus test data were found generally to be in excellent condition with less than 10 percent of the tests exhibiting potential anomalies or discrepancies in the data.

The resilient modulus test data were then studied for the effect of test variables, such as the test and sampling procedures, on the resulting resilient moduli. These data were analyzed by material code for the base and subbase aggregate layers and by soil type for the subgrade. Sampling technique (auger versus test pit) was found to have the most effect on the crushed stone aggregate and uncrushed gravel base materials. For the subgrade soils, sampling technique (Shelby tubes versus auger samples) had the most effect on the clay soils. Sampling technique was found to have little to no effect on the sand base/subbase materials and sand soils.

The resilient modulus data were further investigated to evaluate relationships between resilient modulus and the physical properties of the unbound materials and soils. Using nonlinear regression optimization techniques, equations for each base and soil type were developed to calculate the resilient modulus at a specific stress state from physical properties of the base materials and soils. The primary result from these studies is that the resilient modulus can be reasonably predicted from the physical properties included in the LTPP database, but there is a bias present in the calculated values. Thus, until additional test results become available to improve or confirm these relationships, it is recommended that at least some laboratory tests be performed to measure the resilient modulus for unbound pavement materials and soils.

17. Key Words Resilient modulus, LTPP.		18. Distribution Statement No restrictions. This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.		
19. Security Classification (of this report) Unclassified	20. Security C Unclassified	classification (of this page)	21. No. of Pages 173	22. Price

	APPROXIMATE (CONVERSIONS	TO SI UNITS			APPROXIMATI	E CONVERSIONS F	ROM SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol	Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		-			LENGTH		
in	inches	25.4	millimeters	mm	mm	millimeters	0.039	inches	in
ft	feet	0.305	meters	m	m	meters	3.28	feet	ft
yd	yards	0.914	meters	m	m .	meters	1.09	yards	yd
mi	miles	1.61	kilometers	km	km	kilometers	0.621	miles	mi
		AREA					AREA		
in ²	annes inches	045.0	square	2	2		0.0040		2
m ft²	square inches	645.2	millimeters	mm²	mm²	square millimeters	0.0016	square inches	in² ft²
น yd²	square feet	0.093	square meters	m² m²	m² m²	square meters	10.764	square feet	π yd²
	square yard	0.836	square meters			square meters	1.195	square yards	
ac mi²	acres	0.405	hectares	ha km²	ha km²	hectares	2.47	acres	ac mi²
m	square miles	2.59	square kilometers	KM ⁻	KM"	square kilometers	0.386	square miles	mı-
		VOLUME					VOLUME		
fl oz	fluid ounces	29.57	milliliters	mL	mL	milliliters	0.034	fluid ounces	fl oz
gal ft ³	gallons	3.785	liters	L_	L	liters	0.264	gallons	gal ft ³
ft°	cubic feet	0.028	cubic meters	m³	m ³	cubic meters	35.314	cubic feet	
yd ³	cubic yards	0.765	cubic meters	m³	m³	cubic meters	1.307	cubic yards	yd ³
NOTE: volur	nes greater than 1000 L sh	all be shown in m ³							
		MASS					MASS		
oz	ounces	28.35	grams	g	g .	grams	0.035	ounces	oz
lb	pounds	0.454	kilograms	kg	kg	kilograms	2.202	pounds	lb
Т	short tons (2000 lb)	0.907	megagrams	Mg	Mg	megagrams	1.103	short tons (2000 lb)	T
			(or "metric ton")	(or "t")	(or "t")	(or "metric ton")		. ,	
	TEMPERA	TURE (exact degre	es)			TEMPERA	TURE (exact degrees)		
°F	Fahrenheit	5 (F-32)/9 or (F-32)/1.8	Celsius	°C	℃	Celsius	1.8C+32	Fahrenheit	°F
	il	LUMINATION				IL	LUMINATION		
fc	foot-candles	10.76 lux		lx	lx	lux	0.0929	foot-candles	fc
Ħ	foot-Lamberts		ela/m²	cd/m²	cd/m²	candela/m²	0.2919	foot-Lamberts	fl
	FORCE and	PRESSURE or STR	FSS			FORCE and	PRESSURE or STRESS		
bf	poundforce	4.45 newt		N	N	newtons	0.225	poundforce	lbf
lbf/in²	poundforce per		ascals	kPa	kPa	kilopascals	0.145	poundforce per	lbf/in²
	square inch	U.UU KIIUP	access .	M G	1 ~~ ~	плораочаю	J. 170	pouridiolog per	100011

^{*}SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

(Revised March 2002)

TABLE OF CONTENTS

<u>Chapter</u>	<u>Page</u>
1. INTRODUCTION	1
BACKGROUND	1
STUDY OBJECTIVES	2
SCOPE OF REPORT	2
2. REVIEW OF RESILIENT MODULUS TEST DATA	
IDENTIFICATION OF MISSING RESILIENT MODULUS TESTS	
RESILIENT MODULUS CONSTITUTIVE EQUATION	
IDENTIFICATION OF TEST DATA ANOMALIES	13
3. EFFECT OF SAMPLING TECHNIQUE ON RESILIENT MODULUS	
DATA GROUPS EVALUATED - SOURCES OF VARIABILITY	
IDENTIFICATION OF OUTLIERS	26
COMPARISON OF RESILIENT MODULUS TEST RESULTS	27
Effect of Stress State	
Unbound Aggregate Layers - Test Pit Versus Auger Samples	28
Soils - Test Pit Versus Auger Samples	31
Soils - Shelby Tubes (Undisturbed) Versus Recompacted (Disturbed) Samples.	31
SUMMARY	33
4. EFFECT OF PHYSICAL PROPERTIES ON RESILIENT MODULUS	37
PHYSICAL PROPERTIES USED IN STUDY	37
STATISTICAL PROCEDURE	38
CORRELATION STUDY FOR MODEL DEVELOPMENT	38
Effect of Material/Soil Type	41
Unbound Aggregate Base/Subbase Materials	41
Subgrade Soils	48
SUMMARY	51
5. SUMMARY AND FUTURE RECOMMENDATIONS	
FINDINGS AND OBSERVATIONS	55
RECOMMENDATIONS	57

TABLE OF CONTENTS (continued)

<u>Chapter</u>	<u>Page</u>
APPENDIX A. SUMMARY OF k-COEFFICIENTS FOR THE LTPP RESILIENT	
MODULUS TESTS	59
APPENDIX B. GEOGRAPHICAL EXAMPLES OF THE DIFFERENT TYPES OF	
ANOMALIES IDENTIFIED IN THE RESILIENT MODULUS TEST DATA	97
APPENDIX C. SUMMARY OF THE FLAGGED RESILIENT MODULUS TESTS BY	
ANOMALY TYPE	113
APPENDIX D. PARAMETERS AND THEIR VALUES INCLUDED IN THE	
NONLINEAR REGRESSION RELATING RESILIENT MODULUS TO	
PHYSICAL PROPERTIES	129
APPENDIX E. RESULTS FROM NONLINEAR OPTIMIZATION REGRESSION	
STUDY RELATING RESILENT MODULUS TO PHYSICAL PROPERTIES	139
REFERENCES	161

LIST OF FIGURES

Figu	<u>ure</u> <u>P</u>	age
1	Distribution of the k-coefficients of constitutive equation 3, assuming $k_6 = 0$,	_
	for the entire LTPP resilient modulus database	6
2	Distribution of the k-coefficients of constitutive equation 3, assuming $k_6 = 0$,	7
•	for the unbound aggregate base and subbase materials	/
3	Distribution of the k-coefficients of constitutive equation 3, assuming $k_6 = 0$,	0
4	for the coarse-grained subgrade soils	0
4	for the fine-grained subgrade soils	۵
5	Comparison of measured and predicted resilient modulus (from regressed k-values	>
3	from measured M_R data) for the crushed stone materials sampled from the test pit	
	locations	11
6	Comparison of measured and predicted resilient modulus (from regressed k-values	11
U	from measured M_R data) for the crushed stone materials sampled from the auger	
	locations	.11
7	Graphical comparison of the calculated M_R (using the regressed k-coefficients from	
′	the LTPP test results) to the measured M_R for the gravel soils	12
8	Graphical comparison of the calculated M_R (using the regressed k-coefficients from	
Ū	the LTPP test results) to the measured M_R for the clay soils	12
9	Repeated-load resilient modulus test results for section 014073, layer 3, at the	
	approach end	16
10	Repeated-load resilient modulus test results for section 480802, layer 3, at the	
	leave end	16
11	Repeated-load resilient modulus test results for section 352007, layer 2, at the	
	approach end	17
12	Repeated-load resilient modulus test results for section 390209, layer 2, at the	
	approach end	17
13	Repeated-load resilient modulus test results for section 481093, layer 2, at the	
	approach end	18
14	Sample from test section 010102, layer 1, at the leave end exhibits specimen	
	distortion or excess softening	21
15	Sample from test section 171003, layer 1, at the leave end shows significant effect	
	of confining pressure on resilient modulus	21
16	Sample from test section 014129, layer 1, at the leave end shows sudden drop and	
	then increase in resilient modulus.	22
17	Sample from test section 055803, layer 1, at the approach end exhibiting localized	
	softening or disturbance of the specimen during the test or LVDT movement	22
18	Sample from test section 473108, layer 1, at the leave end shows higher confining	
4.0	pressures result in lower resilient modulus	23
19	Sample from test section 123811, layer 1, at the approach end shows that resilient	22
20	modulus is independent of confining pressure at the lowest vertical stress	23
20	Sample from test section 473104, layer 2, at the approach end shows possible data	24
	entry error	24

LIST OF FIGURES (continued)

<u>Figu</u>	<u>re</u>	Page
21	Graphical comparison of the predicted and measured resilient modulus for the	42
,	crushed stone base materials	43
22	Graphical comparison of the predicted and measured resilient modulus for the	42
22	crushed gravel base materials	43
23	Graphical comparison of the predicted and measured resilient modulus for the uncrushed gravel base materials	45
24	Graphical comparison of the predicted and measured resilient modulus for the	
	sand base materials	45
25	Graphical comparison of the predicted and measured resilient modulus for the	
	coarse-grained soil-aggregate base materials	46
26	Graphical comparison of the predicted and measured resilient modulus for the	
	fine-grained soil-aggregate base materials	46
27	Graphical comparison of the predicted and measured resilient modulus for the	
	fine-grained soil base materials	48
28	Graphical comparison of the predicted and measured resilient modulus for the	
	coarse-grained gravel soils	. 50
29	Graphical comparison of the predicted and measured resilient modulus for the	
	coarse-grained sand soils	50
30	Graphical comparison of the predicted and measured resilient modulus for the	
	fine-grained silt soils.	52
31	Graphical comparison of the predicted and measured resilient modulus for the	52
-	fine-grained clay soils	52
32	Graphical comparison of the resilient modulus predicted from the data sets	52
-	for crushed stone materials sampled from the test pit and auger locations	53
33	Graphical comparison of the calculated M_R using the regressed k-coefficients from	55
	the physical properties of the sand soil group sampled from augers and test pits	54
34	Sample from test section 010111, layer 1, at the leave end exhibits specimen	54
3 4	distortion or excess softening	08
35	Sample from test section 063030, layer 1, at the approach end exhibits specimen	70
55	distortion or excess softening	08
36	Sample from test section 067455, layer 1, at the approach end exhibits specimen	
30	distortion or excess softening	
37	Sample from test section 370212, layer 1, at the approach end exhibits specimen	>>
31	distortion or excess softening	00
38	Sample from test section 179327, layer 1, at the approach end shows significant	77
30	effect of confining pressure on resilient modulus.	100
39	Sample from test section 295403, layer 1, at the approach end shows significant	100
	effect of confining pressure on resilient modulus.	100
40	Sample from test section 296067, layer 1, at the approach end shows significant	100
	effect of confining pressure on resilient modulus	101
41	Sample from test section 289030, layer 1, at the leave end shows significant effect	101
• •	of confining pressure on resilient modulus	101

LIST OF FIGURES (continued)

<u>Figu</u>	<u>Page</u>	2
42	Sample from test section 123811, layer 1, at the leave end shows sudden drop and	
	then increase in resilient modulus	2
43	Sample from test section 280508, layer 1, at the leave end shows sudden drop and	•
	then increase in resilient modulus	۷
44	Sample from test section 283089, layer 1, at the leave end shows sudden drop and	,
	then increase in resilient modulus	,
45	Sample from test section 483875, layer 1, at the leave end shows sudden drop and	,
	then increase in resilient modulus)
46	Sample from test section 483589, layer 1, at the leave end exhibiting localized	4
45	softening or disturbance of the specimen during the test or LVDT movement	ł
47	Sample from test section 483609, layer 1, at the leave end exhibiting localized	4
40	softening or disturbance of the specimen during the test or LVDT movement	ŧ
48	Sample from test section 053048, layer 1, at the leave end exhibiting localized	_
40	softening or disturbance of the specimen during the test or LVDT movement)
49	Sample from test section 541640, layer 1, at the leave end exhibiting localized	_
50	softening or disturbance of the specimen during the test or LVDT movement	,
50	Sample from test section 014125, layer 1, at the approach end shows higher	5
<i>E</i> 1	confining pressures result in lower resilient modulus	,
51	Sample from test section 014127, layer 1, at the leave end shows higher confining	5
50	pressures result in lower resilient modulus	,
52	pressures result in lower resilient modulus	7
52	Sample from test section 481047, layer 1, at the leave end shows higher confining	,
53	pressures result in lower resilient modulus	7
54	Sample from test section 095001, layer 1, at the approach end shows that resilient	′
34	modulus is independent of confining pressure at the lowest vertical stress	2
55	Sample from test section 480801, layer 1, at the approach end shows that resilient	ر
33	modulus is independent of confining pressure at the lowest vertical stress	R
56	Sample from test section 480802, layer 1, at the approach end shows that resilient	,
50	modulus is independent of confining pressure at the lowest vertical stress	9
57	Sample from test section 566031, layer 1, at the approach end shows that resilient	•
31	modulus is independent of confining pressure at the lowest vertical stress	Ģ
58	Sample from test section 014073, layer 3, at the approach end shows possible	٠.
50	data entry error	n
59	Sample from test section 014084, layer 2, at the leave end shows possible data	
	entry error	O
60	Sample from test section 124106, layer 2, at the approach end shows possible data	
	entry error	1
61	Sample from test section 124106, layer 3, at the approach end shows possible data	
-	entry error	1

LIST OF FIGURES (continued)

Figu	<u>ire</u>	Page
62	Residuals, R, for the combined resilient modulus prediction equation for all base and subbase materials	153
63		153
64	Residuals, R, for the crushed stone (LTPP material code 303) resilient modulus prediction equation	154
65	Residuals, R, for the crushed gravel (LTPP material code 304) resilient modulus prediction equation	154
66	Residuals, R, for the sand (LTPP material code 306) resilient modulus prediction equation.	155
67	Residuals, R, for the fine-grained soil-aggregate mixture (LTPP material code 307) resilient modulus prediction equation	155
68	Residuals, R, for the coarse-grained soil-aggregate mixture (LTPP material code 308) resilient modulus prediction equation	156
69	Residuals, R, for the fine-grained soil (LTPP material code 309) resilient modulus prediction equation	156
70	Residuals, R , for the resilient modulus prediction equation for all subgrade soils	157
71	Residuals, R, for the gravel soils resilient modulus prediction equation	
72	Residuals, R, for the sand soils resilient modulus prediction equation	
73	Residuals, R, for the silt soils resilient modulus prediction equation	
74	Residuals, R, for the clay soils resilient modulus prediction equation	159

LIST OF TABLES

<u>Tabl</u>	<u>le</u> *	Page
1	Summary of completed and missing resilient modulus tests as of the October 2000 LTPP data release	3
2	Summary of the median and mean values for each coefficient of constitutive equation 3, assuming $k_6 = 0$, for each of the base and subbase pavement materials and subgrade soils	[
3	Example results of the statistical analyses of the repeated-load resilient modulus tests performed on unbound pavement materials and soils from the LTPP test sections	
4	Summary of identified anomaly types	18
5 6	Data groups for the base/subbase and subgrade soils	
7	Summary of ANOVA to determine effect of sampling technique (auger versus test pit) on resilient modulus	
8	Summary of the student t-test on the difference between augured and test pit samples for the base/subbase materials and subgrade soils	
9	Comparison of results using k-values and resilient modulus values to determine effect of sampling technique (auger versus test pits) on resilient modulus test data	
10	Summary of ANOVA to determine effect of sampling technique (Shelby tube versus auger) on resilient modulus	
11	Summary of the student t-test on the difference between disturbed and undisturbed samples for the subgrade soils	32
12	Comparison of results using k-values and resilient modulus values to determine the effect of sampling technique of undisturbed (Shelby tubes) and disturbed (auger) test specimens on resilient modulus test data	33
13	Summary comparison of the resilient modulus test results for different sampling techniques	
14	Summary of the M_R physical property regression variables	38
15	Summary of the physical properties that were found to be important for predicting resilient modulus for each material and soil type	40
16	k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials	61
17	Resilient modulus tests showing characteristics of exhibiting test specimen distortion or excessive softening	. 114
18	Resilient modulus tests showing significant effect of confining pressure	. 115
19	Resilient modulus tests with a sudden drop and then an increase in resilient modulus.	. 116
20	Resilient modulus tests exhibiting localized softening or disturbance of the specimen during the test or LVDT movement	. 117
21	Resilient modulus tests that result in lower resilient moduli for the higher confining pressures	. 125
22	Resilient modulus tests showing resilient modulus is independent of confining pressure at the lowest vertical stress	
23	Resilient modulus tests with potential data entry error	. 128

LIST OF TABLES (continued)

Tab	<u>le</u>	Page
24	Summary of the LTPP data used in the nonlinear regression study of resilient	
	modulus for all granular base and subbase material data set	.130
25	Summary of the LTPP data used in the nonlinear regression study of resilient	
	modulus for LTPP base and subbase material code 302 data set – uncrushed gravel	. 130
26	Summary of the LTPP data used in the nonlinear regression study of resilient	
	modulus for LTPP base and subbase material code 303 data set - crushed stone	. 131
27	Summary of the LTPP data used in the nonlinear regression study of resilient	
	modulus for LTPP base and subbase material code 304 data set - crushed gravel	. 131
28	Summary of the LTPP data used in the nonlinear regression study of resilient	
	modulus for LTPP base and subbase material code 306 data set - sand	. 132
29	Summary of the LTPP data used in the nonlinear regression study of resilient	
	modulus for LTPP base and subbase material code 307 data set – fine-grained soil-	
	aggregate mixture	. 132
30	Summary of the LTPP data used in the nonlinear regression study of resilient	
	modulus for LTPP base and subbase material code 308 data set - coarse-grained soil-	
	aggregate mixture	. 133
31	Summary of the LTPP data used in the nonlinear regression study of resilient	
	modulus for LTPP base and subbase material code 309 data set - fine-grained soil	. 133
32	Summary of the LTPP data used in the nonlinear regression study of resilient	
	modulus for all subgrade soils data set	. 134
33	Summary of the LTPP data used in the nonlinear regression study of resilient	
	modulus for the gravel subgrade soils data set	. 135
34	Summary of the LTPP data used in the nonlinear regression study of resilient	
	modulus for the sand subgrade soils data set	. 136
35	Summary of the LTPP data used in the nonlinear regression study of resilient	
0.0	modulus for the silt subgrade soils data set	. 137
36	Summary of the LTPP data used in the nonlinear regression study of resilient	
27	modulus for the clay subgrade soils data set	. 138
37	Results from the nonlinear optimization regression study for all base and subbase	4.40
20	material types combined.	. 140
38	Results from the nonlinear optimization regression study for the LTPP base and	1 4 1
39	subbase material code data set 302 – uncrushed gravel	. 141
39	Results from the nonlinear optimization regression study for the LTPP base and subbase material code data set 303 – crushed stone	1.40
40	Results from the nonlinear optimization regression study for the LTPP base and	142
40	subbase material code data set 304 – crushed gravel	1/2
41	Results from the nonlinear optimization regression study for the LTPP base and	143
••	subbase material code data set 306 – sand	144
42	Results from the nonlinear optimization regression study for the LTPP base and	T-1-4
	subbase material code data set 307 – fine-grained soil-aggregate mixture	145
43	Results from the nonlinear optimization regression study for the LTPP base and	110
	subbase material code data set 308 – coarse-grained soil-aggregate mixture	146

LIST OF TABLES (continued)

<u>Tabl</u>	<u>e</u>	<u>Page</u>
44	Results from the nonlinear optimization regression study for the LTPP base and subbase material code data set 309 – fine-grained soil	147
45	Results from the nonlinear optimization regression study for the combined subgrade soil data set	
46	Results from the nonlinear optimization regression study for the LTPP gravel subgrade soil data set	149
47	Results from the nonlinear optimization regression study for the LTPP sand subgrade soil data set	150
48	Results from the nonlinear optimization regression study for the LTPP silt subgrade soil data set	151
49	Results from the nonlinear optimization regression study for the LTPP clay subgrade soil data set	

CHAPTER 1. INTRODUCTION

BACKGROUND

The elastic or resilient modulus of pavement materials is an important material property in any mechanistically based design/analysis procedure for flexible pavements. In fact, the resilient modulus (M_R) is the material property required for the 1993 American Association of State Highway and Transportation Officials (AASHTO) Design Guide, which is an empirically based design procedure, and is the primary material input parameter for the 2002 Design Guide. The 2002 Design Guide is being developed based on mechanistically based principles under National Cooperative Highway Research Program (NCHRP) Project 1-37A, "Development of Design Procedure for New and Rehabilitated Pavements."

Repeated load resilient modulus tests are being performed on all unbound materials and soils of the Specific Pavement Studies (SPS) and General Pavement Studies (GPS) test sections that are in the Federal Highway Administration (FHWA) Long Term Pavement Performance (LTPP) program in accordance with LTPP test protocol P46. The M_R of unbound pavement materials and soils is a measure of the elastic modulus of the material at a given stress state. It is mathematically defined as the applied deviator stress divided by the "recoverable" strain that occurs when the applied load is removed from the test specimen.

$$M_R = \frac{\sigma_d}{\varepsilon_-} \tag{1}$$

Where:

 σ_d = applied deviator stress in a repeated load triaxial test.

 ε_r = recoverable or resilient strain.

The M_R measured at different stress states have been included in the LTPP Information Management System (IMS), but the test results have not been evaluated for use in future research studies.

Previous studies have shown that the resilient modulus test results can be affected by sampling technique, testing procedure, and errors that can occur during the testing program. Some of these errors include incorrect conditioning/stress sequence, leaks in the membrane, incorrect stress levels, unstable Linear Variable Differential Transducer (LVDT) clamps attached to the specimen, exceeding the LVDT linear range limits, and specimen disturbance at the higher stress states. Thus, FHWA authorized a detailed review of the resilient modulus test results that have a Level E status in the LTPP database, i.e., they have passed all levels of the quality control (QC) checks. This report summarizes the findings from the detailed review of the resilient modulus test data.

STUDY OBJECTIVES

This study focused on determining anomalies in the unbound resilient modulus data in the database to ensure data quality and to identify any bias between different data sets. The M_R data were extracted first from the April 2000 data release and updated with additional M_R tests from the October 2000 release. The M_R data were obtained from the TST_UG07_SS07_WKSHT_SUM table in the IMS. The following tasks define the work performed to accomplish the goals of the study:

Task 1: Identify any and all of the repeated load resilient modulus data for unbound pavement materials and soils that are not at Level E.

Task 2: Review and evaluate the resilient modulus data to identify any anomalies in the database.

 M_R tests with potential anomalies were flagged and a "cleaned" data set was used to determine any bias in the data and identify other factors that influence the tests results. The cleaned data set also was used to perform correlation studies between the M_R of the selected constitutive equation and the physical properties of the unbound materials and soils in support of NCHRP Project 1-37A.

SCOPE OF REPORT

This report summarizes the review of the resilient modulus test results that have a Level E status in the LTPP database. The report is divided into five chapters, including the introduction (chapter 1). Chapter 2 provides the process of identifying missing tests and anomalies in the Level E data. Chapter 3 discusses the effect of test variables on resilient modulus. A correlation between the M_R determined from the selected constitutive equation and physical properties of the tests specimens is presented in chapter 4. Chapter 5 summarizes all of the findings and provides recommendations for future research.

CHAPTER 2. REVIEW OF RESILIENT MODULUS TEST DATA

IDENTIFICATION OF MISSING RESILIENT MODULUS TESTS

A total of 1,970 resilient modulus tests were extracted from the April 2000 LTPP database (most current at the time of data extraction) of unbound materials and soils. The October 2000 data release was cross-checked with the April release for additional tests to update the review and findings. A total of 44 additional resilient modulus tests were extracted from the October release, resulting in a total of $2,014 M_R$ tests.

The resilient modulus tests in the LTPP database were organized by State and layer type for each SPS project and by State, layer number, layer type, and section identification number for the GPS test sections. The data were cross-checked with the required number of resilient modulus tests per layer for each project to determine the number of missing tests.

Table 1 summarizes the number of completed and missing resilient modulus tests by layer type as of the October 2000 data release. The numbers of completed and missing tests do not add up to the number of tests required because extra tests were performed. The resilient modulus tests in the database that are counted as complete are identified as Level E data. The number of missing tests includes those M_R tests that have not been performed plus those that have been completed, but which have not passed all QC levels.

Table 1. Summary of completed and missing resilient modulus tests as of the October 2000 LTPP data release.

Layer Type	Soil Type	No. of Tests Required	No. of Tests Completed	No. of Tests Missing	
Subgrade Soil	All	1886	1347	594	
	Clay	652	513	168	
	Gravel	262	123	140	
	Rock	24	3	21	
	Sand	765	580	208	
	Silt	169	116	55	
	Unknown	14	12	2	
Granular Subbase	All	685	259	427	
Granular Base	All	956	385	573	
Unknown	Unknown		23		
	Γotal	3527	2014	1594	

The missing resilient modulus tests were categorized by LTPP region, State, experiment type, and layer type. Data feedback reports for the missing tests were summarized by region and submitted to LTPP. There are a total of 23 M_R tests that cannot be summarized using the layer type due to missing layer structure information. The M_R tests for the subgrade soils were further divided into soil type (i.e., clay, gravel, rock, sand, and silt) since more than half of the total required resilient modulus tests are for the subgrade. Some tests cannot be grouped by soil type due to missing soil classification information.

In summary, more than half of the required testing has been completed and the data have achieved a Level E status. The other half of the required tests either have not been completed or the tests have been performed, but the QC process is incomplete. It is expected that the number of completed M_R tests with a Level E data status will significantly increase in future data releases.

Observation: 2,014 M_R tests of unbound pavement materials and soils have a Level E data status as of the October 200 LTPP data release, while 1,594 have not yet obtained a Level E status.

RESILIENT MODULUS CONSTITUTIVE EQUATION

LTPP test protocol P46 is being used to measure the M_R of unbound pavement materials and subgrade soils. This test is performed over a wide range of vertical stresses and confining pressures to measure the nonlinear (stress-sensitivity) elastic behavior of these materials and soils. Various types of relationships have been used to represent the repeated-load M_R test results of coarse-grained and fine-grained soils. However, Von Quintus and Killingsworth found that the so-called "universal" constitutive equation provided a very good fit to the LTPP M_R test data. The specific equation used is given below:

$$M_R = K_1 P_a \left[\frac{\theta}{P_a} \right]^{K_2} \left[\frac{\sigma_d}{P_a} \right]^{K_3} \tag{2}$$

As noted in chapter 1, the 2002 Design Guide uses M_R as the primary material property for all unbound pavement layers and subgrade soils. The constitutive equation used for determining the M_R of a material is given below and represents an expanded version of equation 2:⁽⁴⁾

$$M_{R} = k_{1} P_{a} \left[\frac{\theta - 3k_{6}}{P_{a}} \right]^{k_{2}} \left[\frac{\tau_{oct}}{P_{a}} + 1 \right]^{k_{3}}$$
(3)

where: P_a = atmospheric pressure.

$$\theta = \text{bulk stress:}$$

$$\theta = \sigma_1 + \sigma_2 + \sigma_3.$$
(4)

 σ_l = major principal stress.

 σ_2 = intermediate principal stress = σ_3 for M_R test on cylindrical specimen.

 σ_3 = minor principal stress/confining pressure.

 τ_{oct} = octahedral shear stress:

$$\tau_{oct} = \frac{1}{3} \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2}$$
 (5)

 $k_1, k_2,$

 k_3 , k_6 = regression constants.

Coefficient k_1 is proportional to Young's modulus. Thus, the values for k_1 should be positive since M_R can never be negative. Increasing the volumetric stress (θ) should produce a stiffening or hardening of the material, which results in a higher M_R . Therefore, the exponent (k_2) of the bulk stress term for the above constitutive equation should also be positive. Coefficient k_6 is intended to account for pore-water pressure or cohesion and is a measure of the material's ability to resist tension. The values for k_6 are expected to be negative or, when positive, less than or equal to a third of the bulk stress. Coefficient k_3 is the exponent of the octahedral shear stress term. The values for k_3 should be negative since increasing the shear stress will produce a softening of the material, i.e., a lower M_R .

The regression for the four k-coefficients in equation 3 was performed, restraining the regression constants to their physical limits using the LTPP April and October 2000 data releases. Only those resilient modulus tests with 12 or more data points were used, resulting in a total of 1,920 tests. A total of 94 M_R tests (approximately 4 percent of the total number of tests) had less than 12 data points. It is important to note that all regressions were performed using units of MPa for M_R and kPa for the stress and pressure parameters in equation 3.

More than half of the k_6 values were equal to zero, while the non-zero values were highly variable with a uniform distribution. Therefore, k_6 was set to zero and the regression was repeated. No significant effect was observed on the regression statistics setting k_6 equal to zero. Figure 1 presents the distributions of the final results for the k-coefficients. The values for the k-coefficients are presented in appendix A.

Observation: Coefficient k_6 in equation 3 was found to be zero for more than 50 percent of the M_R tests.

Coefficient k_1 ranged from 0 to 3. These values are actually factors of a thousand because the M_R value used was in MPa instead of kPa. Coefficient k_2 ranged from 0 to 1.5 and has a binormal population. The binormal population suggests two different groups of soils. Figures 2 through 4 confirm that the coarse-grained soils are different from the fine-grained soils. Coefficient k_3 ranged from 0 to -7 and has a skewed distribution. About 25 percent of the values were equal to zero. The majority of M_R tests with a k_3 coefficient equal to zero were for the unbound aggregate materials or coarse-grained soils.

Figures 2 through 4 present the distributions of the k-coefficients for the unbound aggregate materials and coarse-grained and fine-grained soils, while table 2 summarizes a comparison of the median and mean values for the coefficients from each data group. As shown, coefficients k_1 and k_2 have a normal distribution, while k_3 has a skewed distribution for the base/subbase materials (figure 2). However, the distributions for k_1 and k_2 become skewed as the material becomes finer, while the distribution for k_3 becomes more normal (figures 3 and 4).

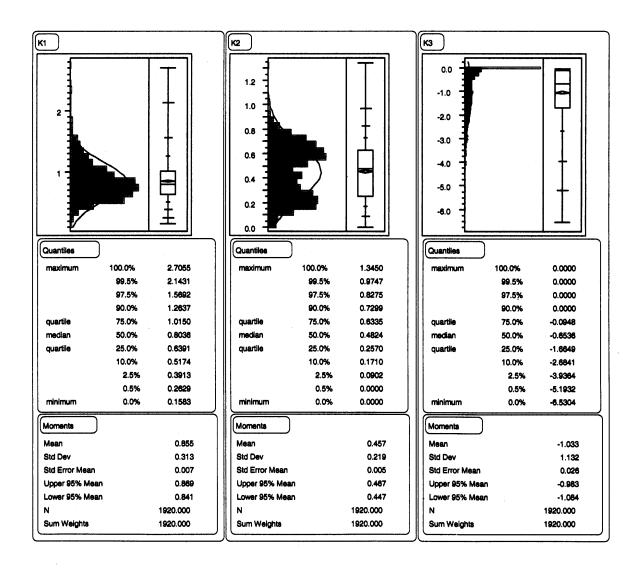


Figure 1. Distribution of the k-coefficients of constitutive equation 3, assuming $k_6 = 0$, for the entire LTPP resilient modulus database.

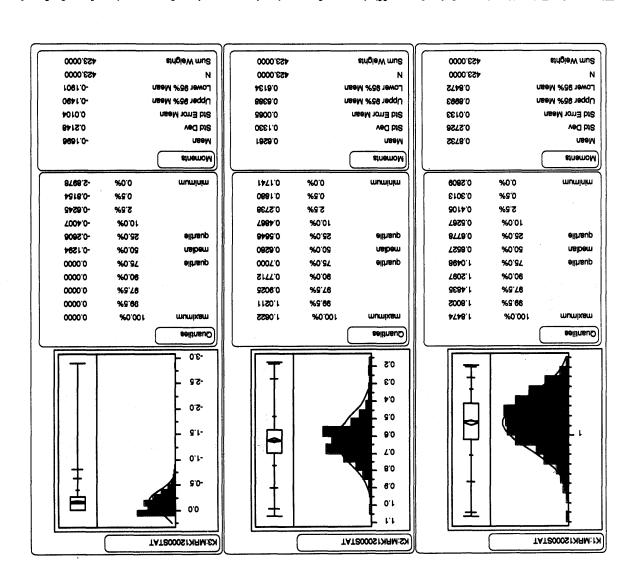


Figure 2. Distribution of the k-coefficients of constitutive equation 3, assuming $k_\delta = 0$, for the unbound aggregate base and subbase materials.

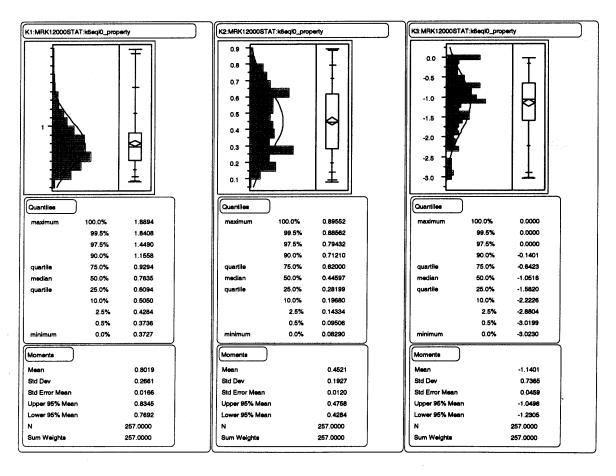


Figure 3. Distribution of the k-coefficients of constitutive equation 3, assuming $k_6 = 0$, for the coarse-grained subgrade soils.

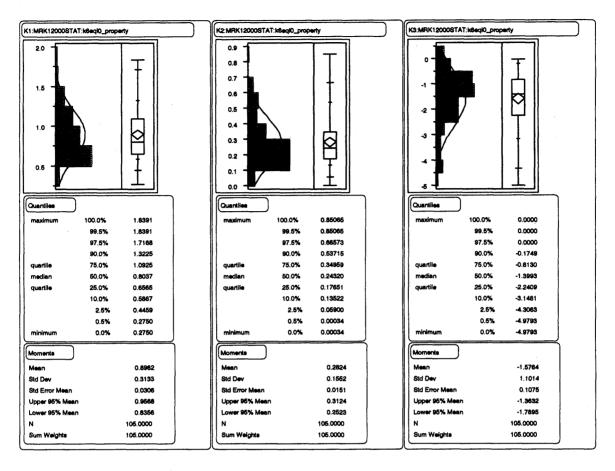


Figure 4. Distribution of the k-coefficients of constitutive equation 3, assuming $k_6 = 0$, for the fine-grained subgrade soils.

Table 2. Summary of the median and mean values for each coefficient of constitutive equation 3, assuming $k_6 = 0$, for each of the base and subbase pavement materials and subgrade soils.

		Material/Soil Group					
Coeffic	ient	Unbound Base- Subbase Materials	Coarse-Grained Soils	Fine-Grained Soils			
	Median	0.853	0.764	0.804			
K1	Mean	0.873	0.802	0.896			
	Standard Deviation	0.2726	0.764 0.802 0.2661 0.446 0.452 0.1927 -1.052 -1.140 0.7365	0.3133			
	Median	0.628	0.446	0.243			
k ₂	Mean	0.626	0.452	0.282			
	Standard Deviation	0.1330	0.1927	0.1552			
***************************************	Median	-0.129	-1.052	-1.399			
k₃	Mean	-0.170	-1.140	-1.576			
	Standard Deviation	0.2148	0.7365	1.1014			
Numbe	er of Tests	423	257	105			

Table 2 shows that the median value for coefficient k_2 increases as the amount of fines in the material/soil increases (fine-grained soils to unbound aggregate base material). Similarly, the median value for k_3 becomes more negative as the material/soil becomes more fine-grained. The majority of the zero values for k_3 were from the unbound base materials and coarse-grained soils, approximately 25 percent of the M_R tests for the unbound aggregate base/subbase materials and 10 percent of the tests for the coarse-grained subgrade soils. Thus, the regressed k-coefficients from the LTPP M_R test results are consistent with previous experience.

Figures 5 and 6 compare the calculated M_R from the regressed k-coefficients of the constitutive equation to the measured M_R for the test pit and augured samples, respectively. Figures 7 and 8 compare the calculated M_R from the regressed k-coefficients of the constitutive equation to the measured M_R for the gravel and clay soil groups, respectively. As shown, the constitutive equation provides an excellent fit to the LTPP M_R test data. The universal constitutive equation provides a similar good fit to the other base materials and subgrade soils.

Observation: Equation 3 provides an excellent fit to the LTPP resilient modulus test data.

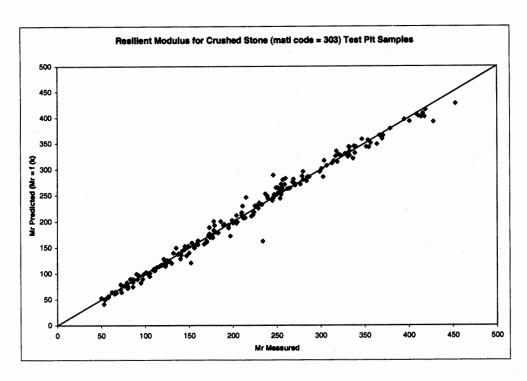


Figure 5. Comparison of measured and predicted resilient modulus (from regressed k values from measured M_R data) for the crushed stone materials sampled from the test pit locations.

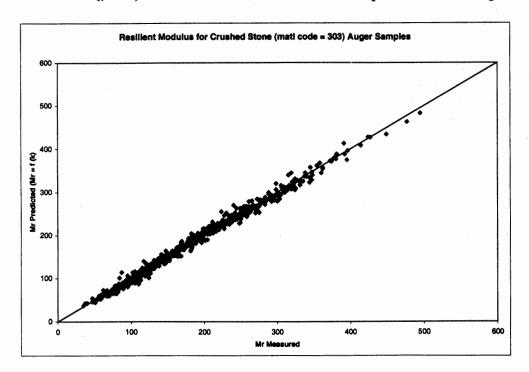


Figure 6. Comparison of measured and predicted resilient modulus (from regressed k values from measured M_R data) for the crushed stone materials sampled from the auger locations.

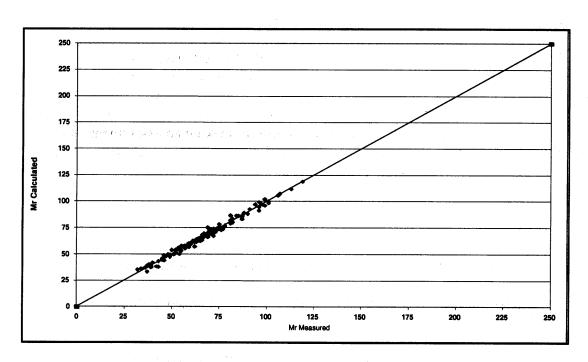


Figure 7. Graphical comparison of the calculated M_R (using the regressed k-coefficients from the LTPP test results) to the measured M_R for the gravel soils.

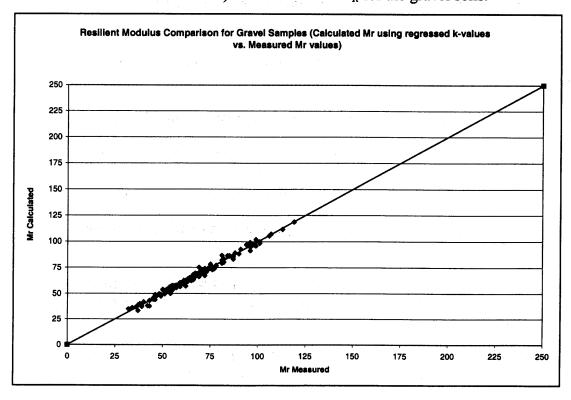


Figure 8. Graphical comparison of the calculated M_R (using the regressed k-coefficients from the LTPP test results) to the measured M_R for the clay soils.

IDENTIFICATION OF TEST DATA ANOMALIES

Approximately 10 percent of the regression results for the k-coefficients have s_e/s_y values greater than 0.5, suggesting that the regressions are not good fits. The reason for the poor fit could be a result of errors that occurred during the test procedure or that the constitutive equation does not represent the actual behavior of selected unbound materials and soils. It is important to ensure that the data are of good quality and without errors prior to making an assessment on the applicability of equation 3. Some possible problems that can occur during the M_R test are listed below:

- Different conditioning sequences or different stress application sequences used in the test program.
- Leaks occurring in the membrane during the test (i.e., an unconfined test).
- Different stress states (applied stress and confining pressure) used in the test program than required by the test protocol.
- Test specimens that begin to fail or exhibit disturbance at the higher stress states.
- LVDT clamps that begin to move or move suddenly because of vibrations during the loading sequence.
- LVDTs that begin to drift during the testing sequence or become restricted due to friction in the measurement system.
- Measured deformations that begin to exceed the linear range of the LVDTs.

The second objective of this study was to identify any possible anomalies that may exist in the resilient modulus database and to determine their possible cause. The process used to identify and flag the resilient modulus test data, with possible anomalies, is summarized below:

- Step 1. The resilient modulus test data were organized by material type or code for the review.
- Step 2. A regression analysis was conducted of the resilient modulus test data to define selected statistical parameters of the relationship between stress and resilient modulus.
- Step 3. A correlation matrix of the resilient modulus test data (resilient modulus correlation with bulk stress and octahedral shear stress) was determined.
- Step 4. A summary of the results from the regression $(R^2, s_e/s_y)$ and correlation matrix by material type was prepared.

18,2000

- Step 5. The resilient modulus tests, with possible anomalies, using the following criteria or threshold values, were identified and flagged:
 - $*R^2 < 0.99$
 - $*s_e/s_v>0.50$
 - *Absolute Values of the Correlation Matrix < 0.50
- Step 6. For those resilient modulus tests that were flagged, a graphical presentation of the data was prepared for a detailed review to confirm the test data anomaly, identify any similarities between these data sets or tests, and determine the probable cause of and recommend an action for the anomaly. If an anomaly could not be observed in the graphical presentation of the data, the M_R test was de-flagged.

Previous studies have found that equation 3 is a good simulation of the measured responses from repeated-load resilient modulus tests. The authors have also found that many anomalies that can and do occur in resilient modulus tests are difficult to identify after the testing has been completed. To ensure that all possible anomalies or discrepancies in the resilient modulus data were identified, fairly restrictive criteria or threshold values were used, as noted in Step 5. These threshold values were used to ensure that the test results were initially reviewed for which equation 3 is not an extremely close mimic of the test results. Simply flagging the test data does not mean that the test results have anomalies. Some of the tests were critically reviewed and were de-flagged because no anomaly could be identified, as noted in Step 6.

Out of 1,920 M_R tests, 212 were flagged using the criteria in Step 5 above. These tests (resilient modulus versus vertical stress) were plotted for the detailed review, as described in step 6. As an example, graphical presentations of the flagged and non-flagged resilient modulus test data summarized in table 3 are shown in figures 9 through 13 and explained briefly below.

- Figures 9 and 10 for test sections 014073 and 480802, respectively, were flagged (see table 3). The resilient modulus test from test section 014073 (figure 9) is characteristic of a coarse-grained soil. The M_R increases with increasing confining pressure as expected. However, the incremental change in M_R increases with repeated vertical stress for the lowest and highest confining pressures, while the incremental change in resilient modulus decreases with increasing repeated vertical stress for the mid-range confining pressure. This characteristic can be the result of binding (friction) in the LVDT core, which can restrict movement of the LVDTs at the lower or smaller repeated vertical loads for a specific confinement level. Figure 10, for test section 480802, shows that the M_R increases with confining pressure between the lower and mid-range confinement, but significantly decreases for the highest confinement, implying a softening effect. In addition, the M_R increases between the first two repeated vertical stresses applied to the test specimen, but then continues to decrease with increasing repeated vertical stresses. This characteristic can be caused by leaks developing in the membrane during the application of the series of vertical loads for the mid-range confinement. Both tests (figures 9 and 10) were identified as questionable.
- The resilient modulus test on section 352007 initially was flagged (see table 3). Figure 11 shows that the resilient modulus test from this test section is characteristic of fine-grained soils. Fine-grained soils typically soften (decreasing resilient modulus) with increasing

vertical pressures. However, no anomalies were observed in the test data. Since no anomaly was observed, this test was de-flagged. The statistical parameters from the regression for the k-coefficients for this test suggest that the constitutive equation may not describe the material/soil response characteristics accurately.

• Figures 12 and 13 for test sections 390209 and 481093, respectively, were not flagged because they meet all of the above criteria. These graphs of non-flagged data are provided for comparative purposes.

After step 6 was completed, $185 M_R$ tests were flagged for potential anomalies (about 10 percent of the tests). These flagged M_R tests were divided into seven groups of anomalies that are defined in table 4. Figures 14 through 20 are graphical examples for each potential anomaly.

Table 3. Example results of the statistical analyses of the repeated-load resilient modulus tests performed on unbound pavement materials and soils from the LTPP test sections.

									Cycles	Correlations with M _R		M _R Test
CODE	SHRP ID	LAYER NO.	TEST NO.	LOC NO.	NO.	R²	S _E /S _Y	MATL CODE		BULK STRESS	BULK STRESS	Initially Flagged
1	4073	3	1	BA*	BG**	0.8508	0.7095	308		0.2039	0.8829	2
35	2007	2	1	BA*	BS**	0.9873	0.8197	309	15	0.6279	-0.3566	2
39	0209	2	1	B22	BG22	0.9996	0.0676	303	15	0.9959	0.7118	
48	0802	3	2	B4	BG01	0.9924	1	302	13	-0.4163	0.0445	2
48	1093	2	1	BA*	BG**	0.9995	0.0469	303	15	0.9985	0.8394	

^{* -} reference to LTPP database code list

^{** -} reference to LTPP database code list

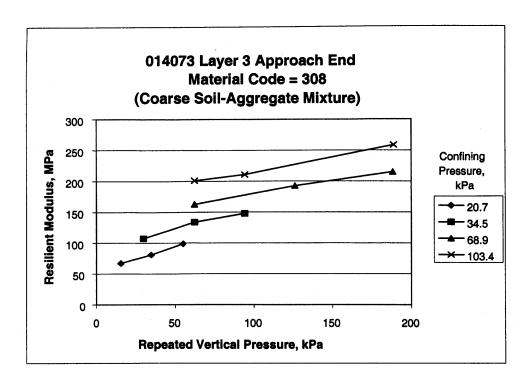


Figure 9. Repeated-load resilient modulus test results for section 014073, layer 3, at the approach end.

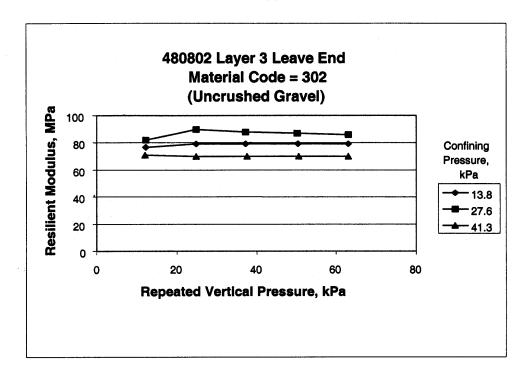


Figure 10. Repeated-load resilient modulus test results for section 480802, layer 3, at the leave end.

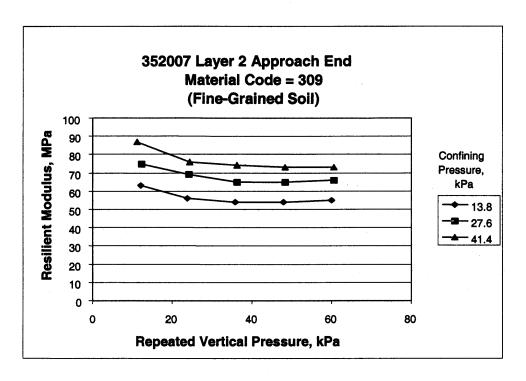


Figure 11. Repeated-load resilient modulus test results for section 352007, layer 2, at the approach end.

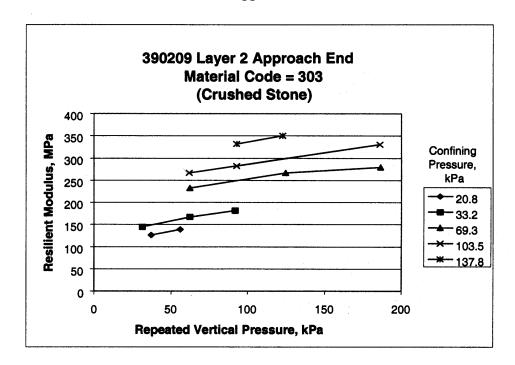


Figure 12. Repeated-load resilient modulus test results for section 390209, layer 2, at the approach end.

Figure 13. Repeated-load resilient modulus test results for section 481093, layer 2, at the approach end.

Table 4. Summary of identified anomaly types.

Type of Anomaly	Definition of Anomaly	Number of M _R Tests
Type 1	Potential disturbance or excessive softening of test specimen at the higher repeated vertical stresses.	17
Type 2	Big gap between confining pressure for the lower repeated loads, which reduces or begins to merge for the higher loads.	15
Type 3	A sudden drop in M_R for a specific confinement, after which the M_R continues to increase with higher vertical loads.	10
Type 4	The different confinement curves cross – one confinement has a different stress sensitivity than the other confinement curve.	103
Type 5	The curves for each of the confining pressures are completely out of order (e.g., highest confinement below mid-confinement).	11
Type 6	All confinements show nearly the same M_R for the lower repeated vertical loads.	20
Type 7	Possible data entry error with both the M_R and vertical stress at zero.	9

- Type 1 Anomaly Example Figure 14. This test shows that the M_R increases and then decreases with increasing repeated vertical loads for each confining pressure. These results are characteristic of specimen disturbance or excess softening at the higher repeated vertical loads. More examples of type 1 anomalies are presented in appendix B, figures 34 through 37.
- Type 2 Anomaly Example Figure 15. This test shows large gaps between different confining pressures for the lower repeated loads (i.e., significant effect of confining pressure), which decreases to almost no effect of confining pressure at the higher repeated loads. In other words, the M_R for the different confining pressures merge with increasing repeated vertical loads. More examples of type 2 anomalies are presented in appendix B, figures 38 through 41.
- Type 3 Anomaly Example Figure 16. This test shows a sudden drop and then increase in the M_R for the highest confining pressure, while the M_R slightly decreases with increasing repeated vertical loads for the two lower confining pressures. This anomaly can be characteristic of re-zeroing the LVDTs in the middle of the test or an unstable LVDT clamp as the specimen deforms under load. More examples of type 3 anomalies are presented in appendix B, figures 42 through 45.
- Type 4 Anomaly Example Figure 17. The change in M_R with increasing repeated vertical loads do not follow the same trend or have the same stress sensitivity for the different confining pressures. In other words, one confining pressure exhibits stress-hardening characteristics, while another exhibits stress-softening characteristics. This characteristic can be the result of restrictions in LVDT movement or unstable LVDT clamps. A majority of the flagged tests fall into this category (see table 4). More examples of type 4 anomalies are presented in appendix B, figures 46 through 49.
- Type 5 Anomaly Example Figure 18. The curves of resilient moduli for the different confining pressures are out of order. The highest confining pressure results in lower resilient modulus. This anomaly can be characteristic of leaks that develop in the membrane during the test. Additional examples of type 5 anomalies are presented in appendix B, figures 50 through 53.
- Type 6 Anomaly Example Figure 19. All confining pressures show nearly the same resilient modulus at the lower repeated vertical loads. In other words, the resilient modulus is independent of confining pressure for the lower repeated vertical loads, but dependent on confinement for the higher loads, in direct opposition to a type 2 anomaly. Additional examples of type 6 anomalies are presented in appendix B, figures 54 through 57.
- Type 7 Anomaly Example Figure 20. There appears to be a data entry error with both the resilient modulus and the vertical stress at zero. More examples of type 7 anomalies are presented in appendix B, figures 58 through 61.

All anomalous data (measured responses and computations) should be checked to confirm that the data are correct. If correct, the data should be removed, a comment should be added to the test result (i.e., "possible anomalous data"), or the material from the specific layer and location should be retested. It is suggested that the flagged samples be retested, because none of the test sections had the same layer or material flagged from both ends of the same section.

For tests where more than one anomaly type is present, the type that best describes the data anomaly was selected. Anomaly types 3, 4, and 5 are usually a result of laboratory test problems. Anomaly types 1, 2, and 6 could be representative of the inability of the selected constitutive equation to describe the soil's response characteristics. Twenty-seven flagged M_R tests were de-flagged after step 6, resulting in 185 tests that were identified as having potential anomalies. This represents just over 8 percent of the M_R tests for which the constitutive equation does not accurately describe the material/soil response characteristics.

Feedback reports were prepared to identify and document those tests with possible anomalies by the seven groups and the reports were submitted to FHWA. [Tables 17 through 23 in appendix C summarize the anomaly types 1 through 7, respectively, along with the anomaly's initial description for each flagged test.]

Observation: Almost 92 percent of the LTPP M_R tests have response characteristics that are accurately simulated by the "universal" constitutive equation selected for the 2002 Design Guide.

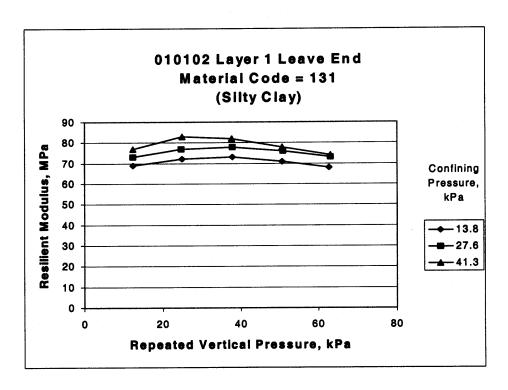


Figure 14. Sample from test section 010102, layer 1, at the leave end exhibits specimen distortion or excess softening.

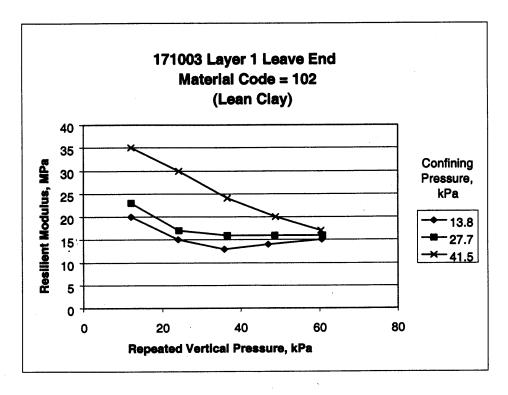


Figure 15. Sample from test section 171003, layer 1, at the leave end shows significant effect of confining pressure on resilient modulus.

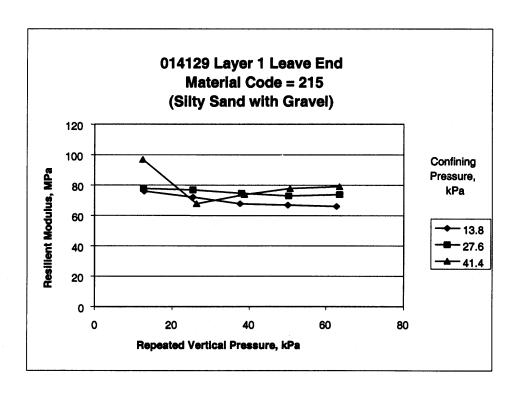


Figure 16. Sample from test section 014129, layer 1, at the leave end shows sudden drop and then increase in resilient modulus.

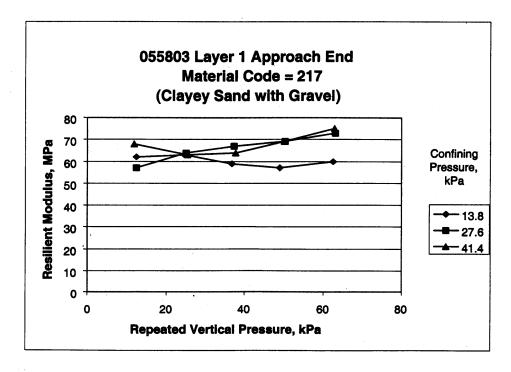


Figure 17. Sample from test section 055803, layer 1, at the approach end exhibiting localized softening or disturbance of the specimen during the test or LVDT movement.

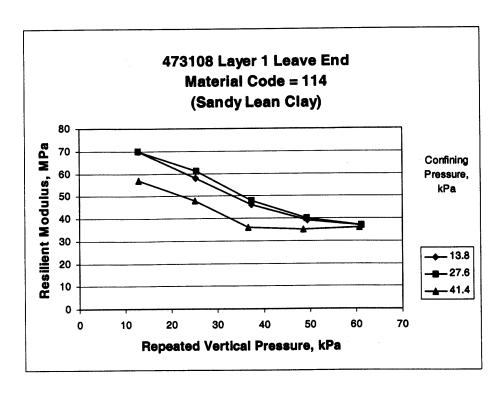


Figure 18. Sample from test section 473108, layer 1, at the leave end shows higher confining pressures result in lower resilient modulus.

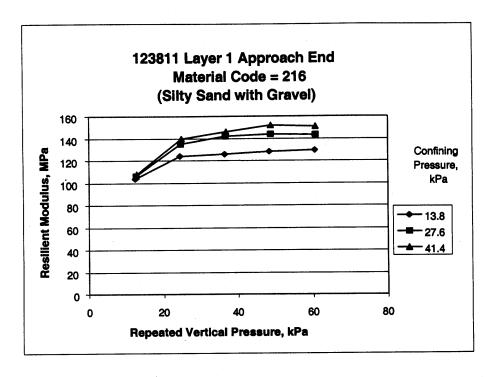


Figure 19. Sample from test section 123811, layer 1, at the approach end shows that resilient modulus is independent of confining pressure at the lowest vertical stress.

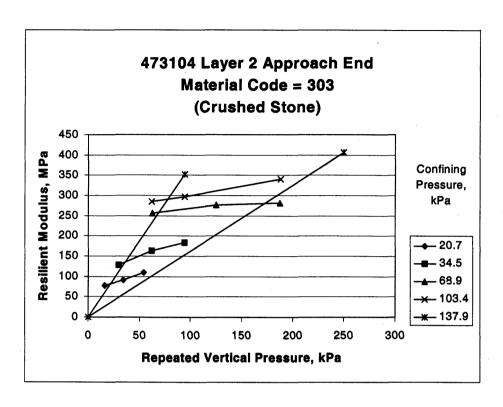


Figure 20. Sample from test section 473104, layer 2, at the approach end shows possible data entry error.

CHAPTER 3. EFFECT OF SAMPLING TECHNIQUE ON RESILIENT MODULUS

As mentioned in chapter 1, previous studies have shown that the M_R can be affected by sampling technique and errors that may occur during the testing program. Chapter 2 focused on identifying anomalies in the resilient modulus test data, while this chapter focuses on the effect of sampling technique.

The materials used for the resilient modulus tests were obtained from one of three sampling techniques: (1) pavement materials and soils sampled from the augers, (2) pavement materials and soils removed from test pits, and (3) soils extracted from Shelby tubes. The difference between auger-test pit samples and auger-Shelby tube samples was evaluated using the cleaned data set (i.e., excluding the anomalies).

There are three other factors, however, that can cause variability and possible bias in the resilient modulus test data. These factors include: (1) the use of different testing contractors and/or operators, (2) test specimen preparation technique, and (3) material variation along a project. Each of these potential sources of variation in resilient modulus test data was considered in evaluating the effect of sampling technique on resilient modulus, with the exception of testing contractor and/or operator.

DATA GROUPS EVALUATED - SOURCES OF VARIABILITY

The laboratory test procedure used for coarse-grained soils (base/subbase materials) is different from that used for fine-grained soils. To eliminate the testing procedure effect, the base/subbase materials were evaluated separately from the subgrade soils. Typical testing errors that can occur during repeated load resilient modulus testing were assumed to be random within a specific material/soil group. Random errors should have no bias on the effect of sampling technique on the resilient modulus test results.

In coarse-grained materials, the sampling technique used can change the gradation of the material. The base/subbase materials were grouped by material codes as defined using LTPP terminology. For each base/subbase group, resilient modulus test results for the auger samples were compared to the test pit samples for each site. The auger versus test pit samples analysis was repeated for the subgrade soils since coarse-grained soils also are present in the subgrade. The resilient modulus for both data groups (test pit and auger samples) was measured on test specimens recompacted to the moisture content and density of the in-place materials. Differences caused by the compaction process or moisture content and density differences between the in-place material and test specimens were assumed to be random within a specific materials/soil group.

The subgrade soils were grouped by soil type (i.e., clay, gravel, sand, and silt). The difference between auger and Shelby tube samples was evaluated because the undisturbed samples in thin-walled Shelby tubes were retained for nearly 2 years prior to removal and testing for some of the test sections. As noted above, moisture content and density differences exist between the

undisturbed (Shelby tube sample) test specimens and those recompacted in the laboratory (augured or test pit samples). However, these differences were assumed to be random within each soil group and have no bias on the effect of sampling technique on the resilient modulus test results.

Materials and soils recovered from the test pits were always taken from the leave end of the test section, while the augured materials and soils were taken from the approach end. Although this represents a systematic difference due to sample location, there is no reason these materials and soils would be consistently different between the ends of the test section. The location of the GPS test sections was selected at random along a project. The differences between the ends of a test section due to sample location were assumed to be random.

Table 5 lists the data groups evaluated for both the base/subbase materials and subgrade soils. The test results that were compared included the M_R at specific stress states and the regressed k-coefficients of the constitutive equation (equation 3). The first comparison was completed on the M_R measured at each stress state. This comparison was then followed by a comparison of the regressed k-values from equation 3. Comparisons of the k-values were completed to determine if there is an effect due to sampling differences on a specific part of the constitutive equation that is not detected by the individual M_R .

Table 5. Data groups for the base/subbase and subgrade soils.

Pavement Layer Type	Material Code/Type*	Number	Total Number		
	Waterial Code/Type	Auger	Test Pit	Shelby Tube	of Tests
	All	405	212	NA	617
	302, Uncrushed Gravel	48	33	NA	81
	303, Crushed Stone	63	46	NA	109
Base/Subbase	304, Crushed Gravel	32	17	NA	49
Dase/Subbase	306, Sand	47	19	NA	66
	307, Fine-Grained Soil-Aggregate Mixture	22	10	NA	32
	308, Coarse-Grained Soil-Aggregate Mixture	127	60	NA	187
	309, Fine-Grained Soil	65	27	NA	92
	All	476	319	456	1,251
	Gravel	78	32	12	122
Subgrade Soil	Sand	223	150	136	509
	Silt	42	34	32	108
	Clay	133	103	276	512
Total Number of Tests		881	531	456	1,868

Those material codes not listed above had too few M_R tests to be included in the test of significance for the effect of sampling technique.

NA - Not applicable

IDENTIFICATION OF OUTLIERS

The student t-test was used to test any difference in the k-coefficients of samples obtained by different techniques. The student t-test assumes that the data have a normal distribution. Therefore, each data group listed in table 5 was checked initially for normality using the Shapiro-Wilk W Test. (5) The data for some of the groups were not distributed normally. These data then

were checked for outliers using the Mahalanobis outlier distance plot. The identified outliers were removed before the student t-test was performed. For those data sets that were not distributed normally even after removing the outliers, the Welch analysis of variance (ANOVA) test was used to determine if the different data groups were from the same population of data.

COMPARISON OF RESILIENT MODULUS TEST RESULTS

Effect of Stress State

An ANOVA was completed on the M_R measured at the different stress states included in the test procedure to determine if sampling technique has an effect on the test results. The data were first checked for outliers and normality, as noted above. A model of one variable (sampling technique) was used in the ANOVA. The one variable has two choices or discrete values related to sampling the materials – test pits or augers and augers or Shelby tubes.

Results from the one-way ANOVA are summarized in table 6. Table 6 identifies those materials and soils for which the M_R ratio was found to be independent or dependent on stress state. The M_R ratio is defined in table 6. The M_R ratio was found to be independent of stress state for most base/subbase materials and all soils. For the materials and soils for which the M_R ratio is independent of stress state, the M_R ratios determined at each stress state can be combined in the analysis to determine if sampling technique has a significant effect on the test results. Material codes 306 (sand) and 308 (coarse-grained soil-aggregate mixture) were the only materials and soils for which the M_R ratio was dependent on stress state.

Table 6. Results of ANOVA to determine if the resilient modulus ratio (auger versus test pit test specimens) is a function of stress.

M-41-1/0-11 70		ANOVA, Prob.>F	M_R Ratio is a Function of Stress ⁽¹⁾
Material/Soil Type			
	All	0.0238	Yes - Vertical Loads
	302, Uncrushed Gravel	0.3769	No
	303, Crushed Stone	0.2874	No
Base/Subbase	304, Crushed Gravel	0.4809	No
Materials	306, Sand	0.0123	Yes - Confinement
	307, Fine-Grained Soil-Aggregate Mixture	0.9112	No
	308, Coarse-Grained Soil-Aggregate Mixture	0.0022	Yes - Vertical Loads
	309, Fine-Grained Soil	0.1057	No
	All	0.1598	No
	Gravel	0.4932	No
Subgrade Soils	Sand	0.6691	No
	Silt	0.8497	No
	Clay	0.3552	No

⁽¹⁾ M_R Ratio = Resilient modulus of test specimens prepared from materials recovered from auger samples divided by the resilient modulus of test specimens prepared from materials recovered from test pits; M_R (Auger)/ M_R (Test Pit).

Unbound Aggregate Layers – Test Pit Versus Auger Samples

The samples for the base/subbase resilient modulus test were either obtained from the augering process or from cutting a test pit and removing bulk samples of the material. The augering process can degrade the larger diameter aggregates. Therefore, the resilient modulus test results for the augured samples were compared to the test results for the test pit samples.

The data were first checked for outliers and normality, as noted above. Assuming that the sample variance is equal to the population variance, a student t-test was then performed with a 95-percent confidence level using the following null and alternative hypotheses in comparing the two data sets:

$$H_o$$
: $\frac{k_a}{k_{tp}} = 1$ or $\frac{M_{Ra}}{M_{Rtp}} = 1$

$$H_o$$
: $\frac{k_a}{k_{tp}} = 1$ or $\frac{M_{Ra}}{M_{Rtp}} = 1$
 H_A : $\frac{k_a}{k_{tp}} \neq 1$ or $\frac{M_{Ra}}{M_{Rtp}} \neq 1$

Table 7 provides a summary of the results from the ANOVA to determine if the sampling technique auger versus test pits has an effect on resilient modulus. In summary, sampling technique does appear to have a significant effect on the resilient modulus ratio for uncrushed gravel, crushed stone, fine-grained soil-aggregate mixture, and fine-grained soil base material groups. The crushed gravel base material is considered borderline as to the effect of sampling technique on the resilient modulus because the probability value is slightly greater than 0.05 (refer to table 7). Sand and coarse-grained soil-aggregate base materials are the only data groups for which the sampling technique of the base materials appears to have no effect on the M_R ratio.

Table 8 summarizes the probability from the student t-test that the k-coefficients and exponents for the auger and test pit samples are equal. With a 95-percent confidence level, a probability value less than 0.05 rejects the null hypothesis. The shaded cells show the data groups that are indifferent.

No difference was observed when all the base/subbase materials were tested together. However, when the materials are grouped by material codes, k_{Ia} and k_{Itp} were different from each other for the uncrushed gravel. For the crushed stone material, both k_1 and k_3 were found to be different between augured and test pit samples. Although not all the k-coefficients for the uncrushed gravel and the crushed stone were different, it is reasonable to conclude that the sampling technique has an effect on the M_R test results since k_I is directly proportional to M_R .

Table 9 provides a summary of the results from the different analyses for comparing the differences between two populations of data that are defined by different sampling techniques using the k-values and resilient modulus. As tabulated, the results are similar for the base and subbase materials, except for the soil-aggregate mixtures.

Table 7. Summary of ANOVA to determine effect of sampling technique (auger versus test pit) on resilient modulus.

Material/Soil Type		Stress	Median	Mean M _R	Standard	ANOVA,	Null
		State ⁽¹⁾	M _R Ratio	Ratio	Deviation	Prob.>[t]	Hypothesis, M_R Ratio = $1^{(2)}$
Base/		Low	0.9706	0.9763	0.1875	0.2022	Accept
Subbase	All	Medium	1.0000	1.0092	0.1264	0.4308	Accept
Materials		High	1.0000	1.0111	0.1183	0.3146	Accept
	302, Uncrushed Gravel	All Values	1.0253	1.0438	0.1712	<0.0001	REJECT
	303, Crushed Stone	All Values	0.9527	0.9391	0.1621	<0.0001	REJECT
	304, Crushed Gravel	All Values	1.0444	1.0323	0.1841	0.0670	Accept
	haranta and the same of the sa	Low	0.9706	1.0540	0.1882	0.4143	Accept
	306, Sand	Medium	1.0000	0.9971	0.0539	0.8759	Accept
		High	0.9563	0.9735	0.0664	0.2652	Accept
	307, Fine- Grained Soil- Aggregate Mixture	All Values	1.0041	1.0494	0.1660	0.0145	REJECT
	308, Coarse-	Low	0.9592	0.9321	0.2097	0.0720	Accept
	Grained Soil-	Medium	1.0000	1.0124	0.1307	0.5631	Accept
	Aggregate Mixture	High	1.0327	1.0253	0.1666	0.3303	Accept
	309, Fine- Grained Soil	All Values	1.0092	1.0331	0.1264	<0.0001	REJECT
Subgrade	All	All Values	1.0476	1.0600	0.2810	<0.0001	REJECT
Soils	Gravel	All Values	1.2226	1.2437	0.2690	<0.0001	REJECT
	Sand	All Values	1.0099	0.9990	0.2016	0.8980	Accept
	Silt	All Values	1.1061	1.0886	0.3112	0.0010	REJECT
	Clay	All Values	1.2803	1.1606	0.3283	<0.0001	REJECT

⁽¹⁾ Low: Confinement = 20.7 kPa, Cyclic Load = 18.6 kPa; Medium: Confinement = 68.9 kPa, Cyclic Load = 124.1 kPa; High: Confinement = 137.9 kPa, Cyclic Load = 248.2 kPa.
(2) Null Hypothesis: $M_R(Auger)/M_R(Test Pit) = 1$.

Table 8. Summary of the student t-test on the difference between augered and test pit samples for the base/subbase materials and subgrade soils.

		Student t-Test Probability (Prob > t)					
Material/Soil Type		K ₁	k ₂	k ₃			
	All	0.2378	0.5846	Ma(0)::01/01			
	302, Uncrushed Gravel	0.0260					
	303, Crushed Stone	0.0350	Missia a	0.0025			
Base/Subbase	304, Crushed Gravel	20 E200					
Materials	306, Sand	TENERALINA	MONSKAN	SHI GOLD			
	307, Fine-Grained Soil-Aggregate Mixture	MYTE GOOG					
	308, Coarse-Grained Soil-Aggregate Mixture		Mara a Ka	0.0192*			
	309, Fine-Grained Soil	.0.353					
	All	0.0328	0.0013	William Co.			
	Gravel	0.0710	0.012041	0.0169			
Subgrade Soils	Sand	LEO SYLTEM	0.0050				
	Silt	NO NOTES		Paymos N			
	Clay	MOMES I		Mark of 1972			

^{*}Student t-test not valid because sample population not normally distributed.

Table 9. Comparison of results using k-values and resilient modulus values to determine effect of sampling technique (auger versus test pits) on resilient modulus test data.

		k-Valı	k-Values; Hypothesis, $k_a/k_{tp} = 1$				
Material/Soil Type		k_{I}	k_2	k ₃	Hypothesis, $M_{Ra}/M_{Rp} = 1$		
Base/Subbase	All	Accept	Accept	Accept	Accept		
Materials	302	REJECT	Accept	Accept	REJECT		
	303	REJECT	Accept REJECT		REJECT		
	304	Accept	Accept	Accept	Accept		
	306	Accept	Accept	Accept	Accept		
	307	Accept	Accept	Accept	REJECT		
	308	Accept	Accept	REJECT	Accept		
	309	Accept	Accept	Accept	REJECT		
Subgrade Soil	All	REJECT	REJECT	Accept	REJECT		
	Gravel	Accept	Accept	REJECT	REJECT		
	Sand	Accept	REJECT	Accept	Accept		
	Silt	Accept	Accept	Accept	REJECT		
	Clay	Accept	Accept	Accept	REJECT		

Observation: Sampling technique of base materials (auger versus test pit samples) has an effect on the M_R test results for the uncrushed gravels and crushed stone materials.

Soils – Test Pit Versus Auger Samples

Table 7 summarizes the difference between the resilient modulus measured on test specimens prepared from soils recovered from test pit samples and those from augured samples. As tabulated, the resilient modulus values are different for all subgrade soil groups with the exception of sand. This observation is consistent with previous experience.

The difference between the k-coefficients regressed from M_R tests performed on test specimens compacted from auger and test pit samples was evaluated for the subgrade soils. Table 8 summarizes the findings of the analysis and comparisons. The shaded cells show the data groups that are the same, i.e., student t-test probability greater than 0.05.

Differences were observed for k_1 and k_2 of the overall subgrade data group, k_3 of the gravel group, and k_2 of the sand group. Note that some differences in the exponents were found for the coarse-grained soils, but no differences were found for the fine-grained soils. This observation is consistent with the base/subbase materials, with the exception of the crushed gravels (material code 304) and sands (material code 306).

Based on the results summarized in table 9, the sampling effect on the M_R ratio is dependent on the type of analysis. Since only one k-coefficient was found to be different for the gravel and sand soil groups, the effect of sampling technique (auger versus test pit) is believed to be small. However, comparison of the M_R ratio suggests that there is a difference caused by sampling technique for all soils, but sand.

Soils - Shelby Tubes (Undisturbed) Versus Recompacted (Disturbed) Samples

The undisturbed samples recovered from thin-walled Shelby tubes were retained in the tubes in some cases for nearly 2 years prior to removal and testing. The effect of storage time in the Shelby tubes on resilient modulus is unknown. However, the M_R of some high-plasticity clays is known to be sensitive to sample preparation (disturbed versus undisturbed test specimens). Therefore, the M_R test results in the LTPP database were evaluated to determine if there are significant differences in the regressed k-coefficients between the Shelby tubes (undisturbed) and recompacted (disturbed) samples. The effect of time retained in the Shelby tubes was not studied because there were too few M_R tests within each of the subgroups at different times.

For each of the data groups listed in table 5, the data were first tested for outliers, normality, and equal sample variances. Student t-tests were then performed with a 95-percent confidence level and the following null and alternative hypotheses:

$$H_o$$
: $k_a = k_{ST}$ or $M_{Ra} = M_{RST}$
 H_A : $k_a \neq k_{ST}$ or $M_{Ra} \neq M_{RST}$

Table 10 summarizes the effects of sampling technique on the measured resilient modulus between undisturbed and disturbed subgrade soil samples. As shown, the resilient modulus is affected by sampling technique for all soil groups, with the exception of sand. This finding is consistent with the previous experience of the authors.

Table 10. Summary of ANOVA to determine effect of sampling technique (Shelby tube versus auger) on resilient modulus.

Soil	Variances	1	Welch ANOVA	ANOVA Testing	Absolute	Null Hypothesis;
Type	Prob.>F	Equal	Testing of	of Means With	Difference	M_R (Shelby Tube),
	ĺ	Variances?	Means With	Means With Equal Variances, -		Undisturbed =
			Unequal	Prob.> F or		M_R (Auger), Disturbed
			Variances,	Prob.>[t]		
			Prob.>F			
All	<0.0001	No	< 0.0001		6.034	REJECT
Gravel	0.0045	No	< 0.0001		11.653	REJECT
Sand	<0.0001	No	0.2725		-0.514	Accept
Silt	0.5582	Yes		<0.0001	9.964	REJECT
Clay	0.9484	Yes		< 0.0001	10.582	REJECT

Table 11 summarizes the probability from the student t-test that the k-coefficient and exponents for the undisturbed and disturbed samples are equal. With a 95-percent confidence level, a probability value less than 0.05 rejects the null hypothesis. The shaded cells show the data groups that are indifferent. Five of the data groups failed the equal variance test. For these five groups, the Welch ANOVA test was used instead, as noted above.

Table 11. Summary of the student t-test on the difference between disturbed and undisturbed samples for the subgrade soils.

Material Type	Student t-Test Probability (Prob > t)							
waterial Type	k ₁	k2	kз					
All		<0.0001*	<0.0001*					
Clay	0.0314		0.0002					
Gravel	Page April 2 March 1		0.0001					
Sand		0.0122						
Silt			<0.0001					

^{*} Welch ANOVA testing equal means, allowing unequal variance.

The shaded cells show the data groups that are the same within a 95-percent confidence level (student t-test probability greater than 0.05). As shown, at least one of the k-coefficients for all groups tested was different. The coefficients from the undisturbed (Shelby tube) and disturbed (auger and test pit) data sets were found to be different for k_1 of the clay soils, k_2 of the overall and sand soil groups, and k_3 of all soil groups, except for sand. Separating the subgrade into soil types reduced the sampling effect except for the clay soils. It is recommended that the M_R results for the clay soils be considered different between the disturbed and undisturbed test specimens. Since only one k-coefficient was different for the other soil types, any sampling effect is considered small for these soil types, especially since k_3 was zero for several M_R tests.

Observation: Sampling technique of subgrade soils (undisturbed versus disturbed test specimens) has an effect on the M_R test results for the clay soils.

Observation: Sampling technique of base and subgrade soils has no effect on the M_R test results for sand base materials and soils.

Table 12 summarizes the results from the different analyses for comparing the differences between two populations of resilient modulus data that are defined by different sampling techniques using the k-values and resilient modulus. As shown, the results are similar for the subgrade soils.

Table 12. Comparison of results using k-values and resilient modulus values to determine the effect of sampling technique of undisturbed (Shelby tubes) and disturbed (auger) test specimens on resilient modulus test data.

Soil Type	k-7	k-Value; Hypothesis, $k_a = k_{st}$				
	k_{I}	k_2	k ₃	$M_{Ra} = M_{Rst}$		
All	Accept	REJECT	REJECT	REJECT		
Gravel	Accept	Accept	REJECT	REJECT		
Sand	Accept	REJECT	Accept	Accept		
Silt	Accept	Accept	REJECT	REJECT		
Clay	REJECT	Accept	REJECT	REJECT		

SUMMARY

The data groups listed in table 5 were analyzed for the effects of sampling techniques. All materials were tested for differences between auger and test pit samples. The subgrade soils were also tested for differences between disturbed (auger and test pits) and undisturbed (Shelby tube) samples.

Tables 9 and 12 summarize the results from the different analyses for comparing the differences between two populations of resilient modulus data that are defined by different sampling techniques using the k-values and resilient modulus values. Table 9 shows that the auger and test pit samples are different for some of the material groups. The difference was considered significant for the uncrushed gravel, crushed stone, and the overall subgrade data group. However, the difference was insignificant when the soils were divided into the four major soil types (i.e., clay, gravel, sand, and silt). Table 12 shows that the disturbed and undisturbed test specimens are different for the overall subgrade and clay data groups. The difference is only considered significant for the clay soils when the subgrade is divided into the four soil types.

It is interesting to note that the null hypothesis from the ANOVA was rejected when the resilient modulus ratio was found to be independent of the stress states and was accepted for those materials when the resilient modulus ratio was dependent on stress state in all cases, with the exception of base material code 304 (crushed gravel) and sand subgrades (refer to tables 6 and 7). Another interesting observation is that the coarse-grained soils were found to have equal variances between the resilient modulus values measured on undisturbed (Shelby tubes) test specimens and disturbed (auger) test specimens. The significance of these observations is unknown.

Table 13 provides an overall summary comparison of the different statistical methodologies used. Most of the results from these comparisons are consistent with previous experience. The following summarizes the recommendations for further data analyses for each material and soil type:

- All sand base materials can be combined into one group, independent of sampling technique.
 In addition, all sand subgrades can also be combined into a single group for analysis purposes.
- The resilient modulus of the crushed stone and uncrushed gravel base materials are dependent on the type of sampling technique used to recover samples for testing. These data groups should be kept separate for further data analyses.
- The resilient modulus of the clay soils is dependent on whether the sample is undisturbed (recovered by Shelby tubes) or disturbed (sampled from augers or recovered from test pits and recompacted). These data groups should be kept separate for further data analyses.
- The effect of sampling technique on the remaining data groups is dependent on the type of analysis used. Thus, it is suggested that the different data groups be combined for simplicity, but caution be taken in analyzing and using these data.

These observations are considered important regarding the future use of the repeated load resilient modulus test data in the LTPP database to accomplish the objectives stated in the introduction chapter to this report and some of the overall LTPP objectives. For example, any differences caused by sampling technique must be clearly defined to determine the relationship between laboratory-measured resilient modulus and backcalculated elastic layer modulus.

Table 13. Summary comparison of the resilient modulus test results for different sampling techniques.

Sampling Technique		Consistently Different Results or Different Populations of Data	Borderline – Dependent on Type of Data Used	Consistently Indifferent Results or Populations of Data are the Same	
Auger Versus Test Pit	Base and Subbase	302, Uncrushed gravel	307, Fine-grained soil-aggregate mixture	304, Crushed gravel 306, Sand	
		303, Crushed stone	309, Fine-grained soil	308, Coarse-grained soil- aggregate mixture	
	Subgrade Soils	None	Gravel Silt Clay	Sand	
Undisturbed (Shelby Tubes) Versus Disturbed (Auger)	Subgrade Soil	Clay	Gravel Silt	Sand	

•	
r	

CHAPTER 4. EFFECT OF PHYSICAL PROPERTIES ON RESILIENT MODULUS

As stated in chapter 1, the M_R is the material property required for all unbound materials and soils for the 1986 and 1993 AASHTO Design Guide. In 1995, Darter, et al., found that about 75 percent of the State Highway Agencies (SHAs) in the United States use either the 1986 or 1993 versions of the AASHTO Design Guide. However, most of these agencies do not routinely measure the M_R in the laboratory. The design M_R is estimated from experience or from other material or soil properties (for example, CBR, R-value, or physical properties).

A potential benefit of estimating the M_R from physical properties is that seasonal variations in resilient modulus can be estimated from seasonal changes in the materials' physical properties. Seasonal variations are critical for determining the design M_R for a particular project. The concept being used in development of the 2002 Design Guide under NCHRP Project 1-37A is to apply the Enhanced Integrated Climatic Model (EICM) to predict changes in the physical properties of unbound pavement materials and soils and to estimate the effect those changes have on the resilient modulus.

Some SHAs have developed relationships between the physical and/or strength properties of the soil and M_R . Determining the M_R from physical properties of unbound materials can capture the effect of the seasonal variations of the M_R as a result of seasonal changes in the material's physical properties, but it does not capture the effect of stress sensitivity. To capture the effects of stress sensitivity, the coefficients of the selected constitutive equation have been regressed for relationships to the soils physical properties. Von Quintus and Killingsworth and Santha, among others, have developed these types of relationships for use in design to capture the effect of stress sensitivity in determining the design M_R . (3,7)

Previous studies have developed relationships between the soil properties and the regressed k-coefficients and exponents of the constitutive model. Those relationships that have good statistics were generally confined to specific soil types. Other studies that have used a wide range of soil types and conditions have generally resulted in poor correlations. The focus of this chapter is to use the cleaned database and determine those physical properties that have an effect on the M_R test results and to determine the accuracy of developing relationships between physical properties and M_R with the LTPP database.

PHYSICAL PROPERTIES USED IN STUDY

The anomalies identified in chapter 2 were removed from the data set based on the April and October 2000 data releases that were used in a nonlinear optimization regression analysis relating the physical properties of the test specimen to the M_R from the constitutive equation. The classification data (including gradation, Atterberg limits, density, moisture, optimum density, moisture contents, and other physical properties) were extracted from the LTPP database of unbound materials. For most LTPP test sections, the strength (e.g., CBR and R-value) of a material or soil is unavailable in the database. Table 14 summarizes all the variables used in the regression analysis and the IMS tables from which the data were extracted. The range, mean,

and median values for each of these variables are included in appendix D for the base and subbase materials and subgrade soils.

Table 14. Summary of the M_R physical property regression variables.

Variable	Description	Table(s) From the IMS
k ₁ (MPa)	Regression constant of M _R constitutive equation	••
k ₂	Regression constant of M _R constitutive equation	
k₃	Regression constant of M _R constitutive equation	
P _{3/8*} , %	Percentage passing 3/8" sieve	TST_SS01_UG01_UG02
P _{No. 4} , %	Percentage passing No. 4 sieve	TST_SS01_UG01_UG02
P _{No. 40} , %	Percentage passing No. 40 sieve	TST_SS01_UG01_UG02
P _{No. 200} , %	Percentage passing No. 200 sieve	TST_SS01_UG01_UG02
% Silt	Percentage of silt	TST_SS02_UG03
% Clay	Percentage of clay	TST_SS02_UG03
LL, %	Liquid limit of soil	TST_UG04_SS03
PI, %	Plasticity index of soil	TST_UG04_SS03
Wopt, %	Optimum water content	TST_UG05_SS05
$\Upsilon_{d, opt}(kg/m^3)$	Maximum dry unit weight of soil	TST_UG05_SS05
Ws, %	Water content of the test specimen	TST_UG07_SS07_A,
**S, /O	Tracer content of the test specimen	TST_UG07_SS07_B
Y _s (kg/m ³)	Dry density of the test specimen	TST_UG07_SS07_A,
28 (Ng////	bry deficity of the lost opposition	TST_UG07_SS07_B

1 in = 25.4 mm

STATISTICAL PROCEDURE

A nonlinear optimization regression analysis was performed using SAS_{\oplus} statistical analysis system software relating the physical properties (listed in table 14) of the test specimen to the M_R used in the constitutive equation on the "clean" data set. A stepwise regression analysis was initially performed relating the physical properties to the resilient modulus to identify the important variables. The procedure combined the forward and backward stepwise regression methods.

A variable (physical property) with a 0.25 probability was selected to enter the regression and was removed with a 0.1 probability to stay. The regression started with no variables in the model. The F statistics were calculated for each independent variable. The variable with the most significant level greater than 0.25 was entered into the model first. All variables were entered individually with this entry criterion. The variables already in the model did not necessarily remain, because after a variable is added, the stepwise method considers all the variables already included and deletes any variable that does not yield an F statistic at a level of significance greater than 0.1. The process was completed when no more variables outside the model had a level of significance greater than 0.25 to enter and 0.1 to delete.

CORRELATION STUDY FOR MODEL DEVELOPMENT

As discussed in chapter 3, the base/subbase materials should be analyzed separately from the subgrade materials. The base/subbase materials were grouped by material code from LTPP terminology for pavement materials and soils. The crushed stone and uncrushed gravel materials

were separated into auger and test pit samples to see the effect of sampling technique as discussed in chapter 3. The subgrade material was grouped by material type (clay, gravel, silt, and sand) and the clay soils were further grouped into: (1) disturbed samples and (2) undisturbed samples.

The test specimens from the Shelby tubes were taken at various depths through the sampling tubes, while the samples from which the physical properties were measured were confined to the top 0.3 m of the subgrade. As a result, the resilient modulus tests and some of the physical property tests could have been performed on entirely different soils. Von Quintus and Killingsworth identified this fact as a problem in completing similar correlations in 1996. (3) Thus, the undisturbed test specimens (Shelby tube samples) were not included in the correlations between resilient modulus and physical properties.

Appendix E summarizes the properties that were found to be important and the resulting statistical measures of the correlation for each of the data groups analyzed. Table 15 presents an overall summary of those physical properties that were found to be important for each material and soil. Observations from these correlation studies are noted below:

- The maximum or optimum dry unit weight was found to be important for all base and subbase material types, with the exception of the fine-grained soil (LTPP material code 309); while the optimum moisture content and percent passing the 3/8-in (9.5 mm) sieve were found to be important for most coarse-grained base materials.
- The plasticity index and the percent passing the No. 40 sieve were the only properties found to be important for the fine-grained soil base material group (LTPP material code 309).
- The water content and percent clay for the test specimen are important for all soil groups.
- The liquid limit is important for all soils except the silt group, while the percent silt is important for all soils except the gravel group.

Table 15. Summary of the physical properties that were found to be important for predicting resilient modulus for each material and soil type.

Independent			Base/	Subbase Mate	erial				So	oils	
Variable	303, Crushed Stone	304, Crushed Gravel	302, Uncrushed Gravel	306, Sand	308, Coarse- Grained Soil- Aggr. Mixture	307, Fine- Grained Soil- Aggr. Mixture	309, Fine- Grained Soil	Gravel	Sand	Silt	Clay
Percent passing 3/8-in sieve, P _{3/8}	1	1		√	٧	1		1	1		
Percent passing No. 4 sieve, P ₄					1	1			1		1
Percent passing No. 40 sieve, P ₄₀	٧	1		1	1		1				√ √
Percent passing No. 200 sieve, P ₂₀₀			1		1	√ .			1		1
Percent Clay, %Clay								. 1	V	1	1
Percent Silt, %Silt									1	1	│
Liquid Limit, LL	1	1		1		√		1	\ \		1
Plasticity Index, PI		V		1	1		1	1		1	
Water content of test specimen, W_s		V	1		1			1	1	1	1
Dry density of test specimen, γ _s		V	V		1	1			√		V
Optimum water content, W_{opt}	1	٧	1		1	1			1		1
Maximum dry unit weight, γ _{opt}	1	1	٧	1	1	1			1		1
Number of M_R Tests	109	49	81	66	187	32	92	122	509	108	512

1 in = 25.4 mm

Effect of Material/Soil Type

Dividing the base/subbase materials by material code improves the regression statistics from the overall base/subbase model (see appendix E). When the crushed stone material was separated into auger and test pit samples, as recommended in chapter 3, some improvement was observed. However, this improvement is inconclusive and debatable because the greater correlation may be the result of the smaller sample size. The uncrushed gravel was not separated into auger and test pit samples due to a limited number of data points (refer to table 5).

Sorting the subgrade by soil type also improved the regression statistics as compared to the overall soil model (see appendix E). The subgrade materials were not classified in accordance with AASHTO, because the number of data points was limited for some of the classifications. Sampling technique (auger versus test pit samples) did not improve the regression statistics. The remaining part of this chapter presents the regression equations that resulted from the nonlinear optimization for each base material type and soil group. The residuals (bias) for each of the prediction models are provided in appendix E. The symbols used in the following equations were defined in chapter 2 (equation 3) and in table 15.

Unbound Aggregate Base/Subbase Materials

<u>Crushed Stone Materials – LTPP Material Code 303</u>

$$M_{R} = \left[0.7632 + 0.0084(P_{3/8}) + 0.0088LL - 0.0371W_{opt} - 0.0001\gamma_{opt}\right]p_{a} *$$

$$\left[\frac{\theta}{p_{a}}\right]^{\left(2.2159 - 0.0016P_{3/8} + 0.0008LL - 0.038W_{opt} - 0.0006\gamma_{opt} + 2.4x10^{-7}\left[\frac{\gamma^{2}_{opt}}{P_{40}}\right]\right)} *$$

$$\left[\frac{\tau_{oct}}{p_{a}} + 1\right]^{-1.1720 - 0.0082LL - 0.0014W_{opt} + 0.0005\gamma_{opt}}$$
(6)

Number of points = 853
Mean squared error = 1699.6

$$S_e$$
 = 41.23
 S_y = 87.42
 S_e/S_y = 0.4716

Figure 21 shows a comparison of the measured and predicted resilient modulus using equation 6 at the appropriate stress states used to test crushed stone base materials.

Crushed Gravel - LTPP Material Code 304

$$M_{R} = \begin{bmatrix} -0.8282 - 0.0065(P_{3/8}) + 0.0114LL + 0.0004PI - 0.0187W_{opt} + 0.0036W_{s} + \\ 0.0013\gamma_{s} - 2.6x10^{-6} \left(\frac{\gamma_{opt}^{2}}{P_{40}}\right) \end{bmatrix}$$

$$P_{a} \left[\frac{\theta}{P_{a}}\right]^{\left(\frac{4.9555 - 0.0057LL - 0.0075PI - 0.0470W_{s} - 0.0022\gamma_{opt} + 2.8x10^{-6} \left[\frac{\gamma_{opt}^{2}}{P_{40}}\right]\right)} \left[\frac{\tau_{oct}}{P_{a}} + 1\right]^{-3.514 + 0.0016\gamma_{s}}$$
Number of points = 404
Mean squared error = 854.4
$$S_{e} = 29.23$$

$$S_{y} = 66.74$$

$$S_{e}/S_{y} = 0.4380$$
(7)

Figure 22 shows a comparison of the measured and predicted resilient modulus using equation 7 at the appropriate stress states used to test crushed gravel base materials.

<u>Uncrushed Gravel – LTPP Material Code 302</u>

$$M_{R} = \left[-1.8961 + 0.0014(\gamma_{s}) - 0.1184\left(\frac{W_{s}}{W_{opt}}\right)\right] p_{a} \left[\frac{\theta}{p_{a}}\right]^{\left(0.4960 - 0.0074P_{200} - 0.0007\gamma_{s} + 1.6972\left(\frac{\gamma_{s}}{\gamma_{opt}}\right) + 0.1199\left(\frac{W_{s}}{W_{opt}}\right)\right)} * \left[\frac{\tau_{oct}}{p_{a}} + 1\right]^{\left(-0.5979 + 0.0349W_{opt} + 0.0004\gamma_{opt} - 0.5166\left[\frac{W_{s}}{W_{opt}}\right]\right)}$$
Sumber of points
$$= 461$$

Number of points = 461
Mean squared error = 475.9

$$S_e$$
 = 21.81
 S_y = 63.05
 S_e/S_y = 0.3460

Figure 23 shows a comparison of the measured and predicted resilient modulus using equation 8 at the appropriate stress states used to test crushed gravel base materials.

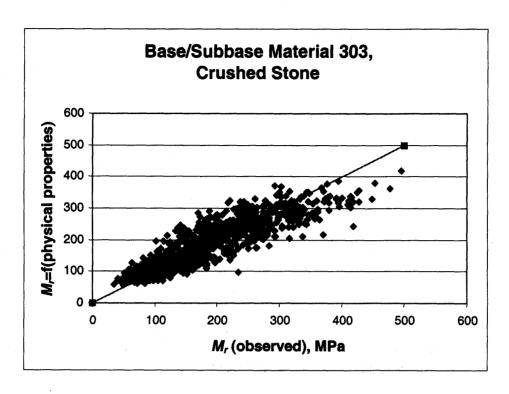


Figure 21. Graphical comparison of the predicted and measured resilient modulus for the crushed stone base materials.

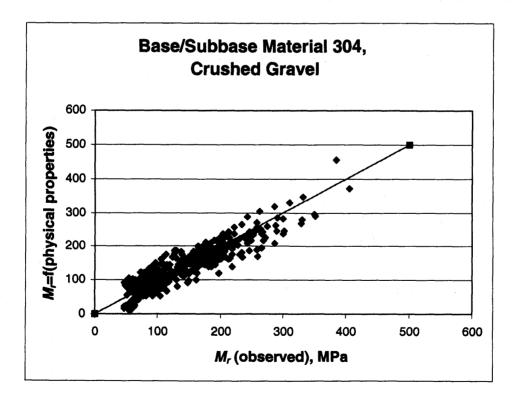


Figure 22. Graphical comparison of the predicted and measured resilient modulus for the crushed gravel base materials.

Sand - LTPP Material Code 306

$$M_{R} = \left[-0.2786 + 0.0097 P_{3/8} + 0.0219 LL - 0.0737 PI + 1.8 x 10^{-7} \left(\frac{\gamma_{opt}^{2}}{P_{40}} \right) \right] p_{a} *$$

$$\left[\frac{\theta}{P_{a}} \right]^{\left(1.1148 - 0.0053 P_{3/8} - 0.0095 LL + 0.0325 PI + 7.2 x 10^{-7} \left(\frac{\lambda_{opt}^{2}}{P_{40}} \right) \right)} \left[\frac{\tau_{oct}}{P_{a}} + 1 \right]^{\left(-0.4508 + 0.0029 P_{3/8} - 0.0185 LL + 0.0798 PI \right)}$$
(9)

 Number of points
 =
 519

 Mean squared error
 =
 512.7

 S_e =
 22.64

 S_y =
 51.61

 S_e/S_y =
 0.4388

Figure 24 shows a comparison of the measured and predicted resilient modulus using equation 9 at the appropriate stress states used to test sand base materials.

Coarse-Grained Soil-Aggregate Mixture - LTPP Material Code 308

$$M_{R} = \begin{bmatrix} -0.5856 + 0.0130P_{3/8} - 0.0174P_{4} + 0.0027P_{200} + 0.0149PI + 1.6x10^{-6} (\gamma_{opt}) \\ -0.0426W_{s} + 1.6456 (\frac{\gamma_{s}}{\gamma_{opt}}) + 0.3932 (\frac{W_{s}}{W_{opt}}) - 8.2x10^{-7} (\frac{\gamma_{opt}^{2}}{P_{40}}) \end{bmatrix} P_{a} * \begin{bmatrix} \frac{\theta}{P_{a}} \end{bmatrix}^{\left(0.7833 - 0.0060P_{200} - 0.0081PI + 0.0001\gamma_{opt} - 0.1483 (\frac{W_{s}}{W_{opt}}) - 2.7x10^{-7} (\frac{\gamma_{opt}^{2}}{P_{40}}) \right)} \begin{bmatrix} \frac{\tau_{oct}}{P_{a}} + 1 \end{bmatrix}^{\left(-0.1906 - 0.0026P_{200} + 8.1x10^{-7} (\frac{\gamma_{opt}^{2}}{P_{40}})\right)} \end{bmatrix}$$
(10)

Number of points = 2,323 Mean squared error = 1883.9 S_e = 43.40 S_y = 80.19 S_e/S_y = 0.5413

Figure 25 shows a comparison of the measured and predicted resilient modulus using equation 10 at the appropriate stress states used to test coarse-grained soil-aggregate base materials.

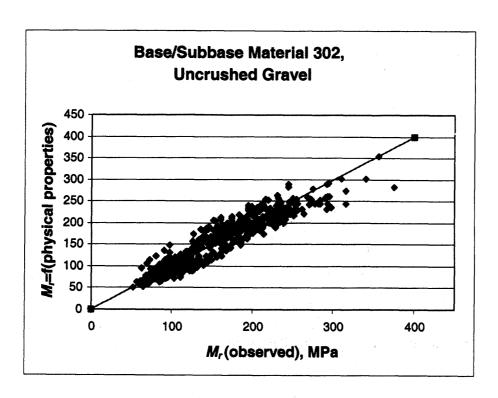


Figure 23. Graphical comparison of the predicted and measured resilient modulus for the uncrushed gravel base materials.

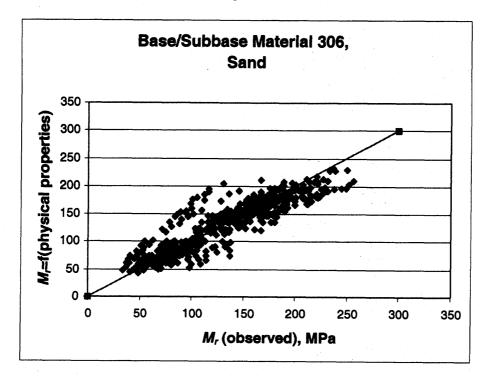


Figure 24. Graphical comparison of the predicted and measured resilient modulus for the sand base materials.

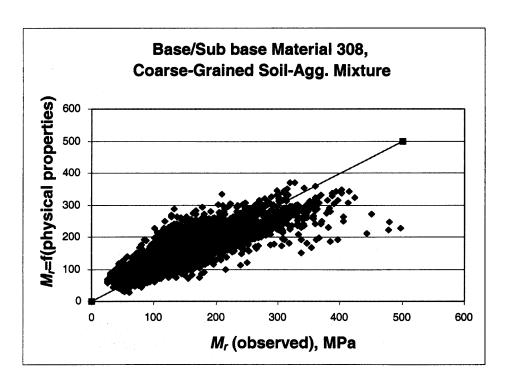


Figure 25. Graphical comparison of the predicted and measured resilient modulus for the coarse-grained soil-aggregate base materials.

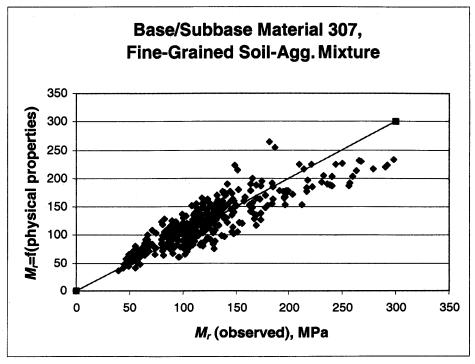


Figure 26. Graphical comparison of the predicted and measured resilient modulus for the fine-grained soil-aggregate base materials.

Fine-Grained Soil-Aggregate Mixture - LTPP Material Code 307

$$M_{R} = \left[-0.7668 + 0.0051P_{4} + 0.0128P_{200} + 0.0030LL - 0.0510W_{opt} + 1.1729 \left(\frac{\gamma_{s}}{\gamma_{opt}} \right) \right] p_{a} *$$

$$\left[\frac{\theta}{p_{a}} \right]^{\left[0.4951 - 0.0141P_{4} - 0.0061P_{200} + 1.3941 \left(\frac{\lambda_{s}}{\gamma_{opt}} \right) \right]} \left[\frac{\tau_{oct}}{p_{a}} + 1 \right]^{\left[0.9303 + 0.0293P_{3/8} + 0.0036LL - 3.8903 \left(\frac{\gamma_{s}}{\gamma_{opt}} \right) \right]}$$
Number of points = 390
Mean squared error = 588.2
$$S_{e} = 24.25$$

$$S_{y} = 49.37$$

$$S_{e}/S_{y} = 0.4912$$
(11)

Figure 26 shows a comparison of the measured and predicted resilient modulus using equation 11 at the appropriate stress states used to test fine-grained soil-aggregate base materials.

Fine-Grained Soil - LTPP Material Code 309

$$M_{R} = \left[0.8409 + 0.0004P_{40} + 0.0161PI\right]p_{a}\left[\frac{\theta}{p_{a}}\right]^{(0.6668 - 0.0007P_{40} - 0.0139PI)}\left[\frac{\tau_{oct}}{p_{a}} + 1\right]^{(-0.1667 - 0.0207PI)}$$
Number of points = 1,079
Mean squared error = 1,167
$$S_{e} = 34.16$$

$$S_{y} = 62.80$$

$$S_{e}/S_{y} = 0.5440$$

Figure 27 shows a comparison of the measured and predicted resilient modulus using equation 12 at the appropriate stress states used to test fine-grained soil base materials.

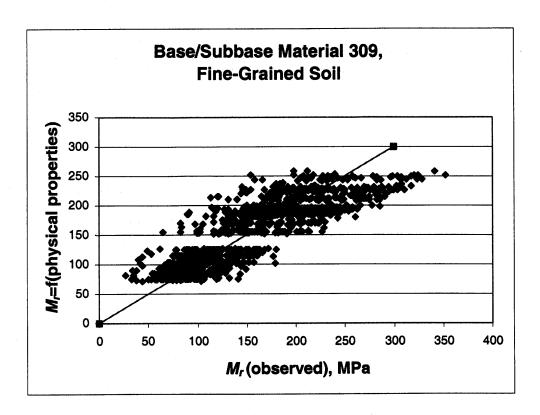


Figure 27. Graphical comparison of the predicted and measured resilient modulus for the fine-grained soil base materials.

Subgrade Soils

Coarse-Grained Gravel Soils

$$\begin{split} M_R &= \left[1.3429 - 0.0051 P_{3/8} + 0.0124 (\%Clay) + 0.0053 LL - 0.0231 W_s\right] p_a * \\ &\left[\frac{\theta}{p_a}\right]^{(0.3311 + 0.0010 P_{3/8} - 0.0019 (\%Clay) - 0.0050 LL - 0.0072 PI + 0.0093 W_s)} * \\ &\left[\frac{\tau_{oct}}{p_a} + 1\right]^{(1.5167 - 0.0302 P_{3/8} + 0.0435 (\%Clay) + 0.0626 LL + 0.0377 PI - 0.2353 W_s)} \end{split}$$

Number of points = 957
Mean squared error = 301.3

$$S_e$$
 = 17.36
 S_y = 26.81
 S_a/S_y = 0.6474

Figure 28 shows a comparison of the measured and predicted resilient modulus using equation 13 at the appropriate stress states used to test coarse-grained gravel soils.

Coarse-Grained Sand Soils

$$\begin{split} M_R &= \left[3.2868 - 0.0412 P_{3/8} + 0.0267 P_4 + 0.0137 (\% Clay) + 0.0083 LL - 0.0379 W_{opt} - 0.0004 \gamma_s \right] p_a * \\ &\left[\frac{\theta}{p_a} \right]^{\left[0.5670 + 0.0045 P_{3/8} - 2.98 \times 10^{-5} (P_4) - 0.0043 (\% Silt) - 0.0102 (\% Clay) - 0.0041 LL + 0.0014 W_{opt} - 3.41 \times 10^{-5} \gamma_s - 0.4582 \left(\frac{\gamma_s}{\gamma_{opt}} \right) + 0.1779 \left(\frac{W_s}{W_{opt}} \right) \right] * \\ &\left[\frac{\tau_{oct}}{p_a} + 1 \right]^{\left[-3.5677 + 0.1142 P_{3/8} - 0.0839 P_4 - 0.1249 P_{200} + 0.1030 (\% Silt) + 0.1191 (\% Clay) - 0.0069 LL - 0.0103 W_{opt} - 0.0017 \gamma_s + 4.3177 \left(\frac{\gamma_s}{\lambda_{opt}} \right) - 1.1095 \left(\frac{W_s}{W_{opt}} \right) \right] \\ &Number of points &= 3,117 \\ &Mean squared error &= 357.7 \\ &S_e &= 18.91 \\ &S_y &= 24.79 \\ &S_e/S_y &= 0.7630 \end{split}$$

Figure 29 shows a comparison of the measured and predicted resilient modulus using equation 14 at the appropriate stress states used to test coarse-grained sand soils.

Fine-Grained Silt Soils

$$M_{R} = \left[1.0480 + 0.0177(\%Clay) + 0.0279PI - 0.370W_{s}\right]p_{a}\left[\frac{\theta}{p_{a}}\right]^{(0.5097 - 0.0286PI)} * \left[\frac{\tau_{oct}}{p_{a}} + 1\right]^{(-0.2218 + 0.0047(\%Silt) + 0.0849PI - 0.1399W_{s})}$$
(15)

Number of points = 464
Mean squared error = 193.0

$$S_e$$
 = 13.89
 S_y = 24.71
 S_e/S_y = 0.5622

Figure 30 shows a comparison of the measured and predicted resilient modulus using equation 15 at the appropriate stress states used to test fine-grained silt soils.

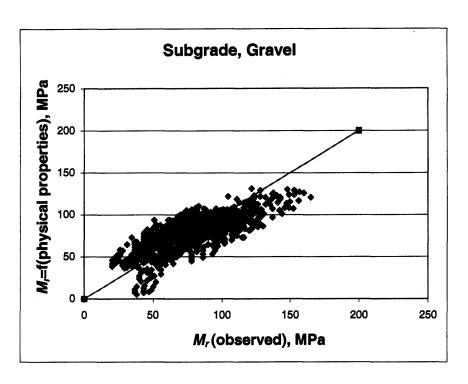


Figure 28. Graphical comparison of the predicted and measured resilient modulus for the coarse-grained gravel soils.

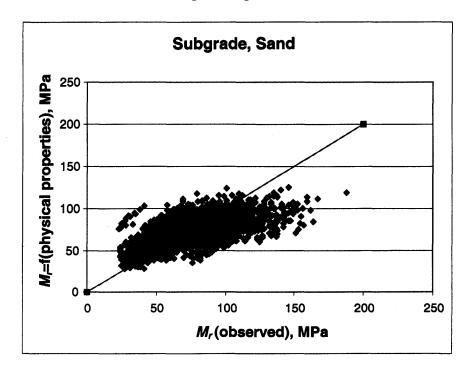


Figure 29. Graphical comparison of the predicted and measured resilient modulus for the coarse-grained sand soils.

Fine-Grained Clay Soils

$$M_{R} = \left[1.3577 + 0.0106(\%Clay) - 0.0437W_{s}\right]p_{a}\left[\frac{\theta}{p_{a}}\right]^{(0.5193 - 0.0073P_{4} + 0.0095P_{40} - 0.0027P_{200} - 0.0030LL - 0.0049W_{opt})} * \left[\frac{\tau_{oct}}{p_{a}} + 1\right]^{(1.4258 - 0.0288P_{4} + 0.0303P_{40} - 0.0521P_{200} + 0.0251(\%Silt) + 0.0535LL - 0.0672W_{opt} - 0.0026\gamma_{opt} + 0.0025\gamma_{s} - 0.6055\left(\frac{W_{s}}{W_{opt}}\right)}$$

$$Number of points = 1,484$$

$$Mean squared error = 557.9$$

$$S_{e} = 23.62$$

$$S_{y} = 29.22$$

$$S_{e}/S_{y} = 0.8082$$

$$(16)$$

Figure 31 shows a comparison of the measured and predicted resilient modulus using equation 16 at the appropriate stress states used to test fine-grained clay soils.

SUMMARY

The results from the nonlinear optimization regression study were compared to those from earlier studies. The statistical parameters for some of the unbound aggregate base and subbase layers improved, indicating that the defined anomalies and use of nonlinear regression techniques were important. In summary, the physical properties show fair to good correlations between the physical properties and M_R . The following are some of the more important findings from these correlation studies:

- Several key factors affect the correlation between the material physical properties of the pavement materials and soils and M_R . For example, recompacting the materials may have changed some of the physical features of the test specimens from what was measured for the bulk samples.
- The statistics for all models were generally fair to good for both the unbound aggregate materials and the subgrade soils. Breaking the data groups into subgroups by sampling technique did improve on the regression statistics. Most of the s_{θ}/s_{y} terms are less than 0.7. The base materials generally have better statistical parameters than the soils.
- The primary result from these correlation studies is that the resilient modulus from constitutive equation 3 can be reasonably predicted from the physical properties that are included in the LTPP database.
- The physical properties of percent clay and test specimen moisture content or density are important for all soil groups.
- Percent silt was an important property for all soil groups, except for the gravelly soils.

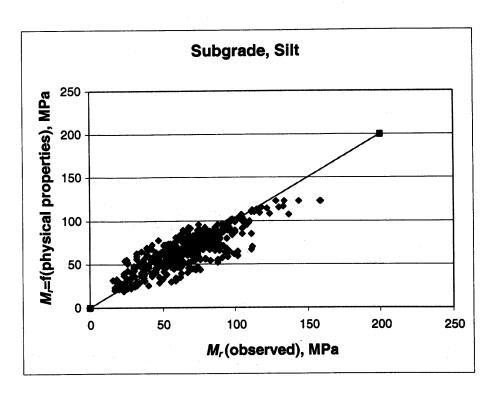


Figure 30. Graphical comparison of the predicted and measured resilient modulus for the fine-grained silt soils.

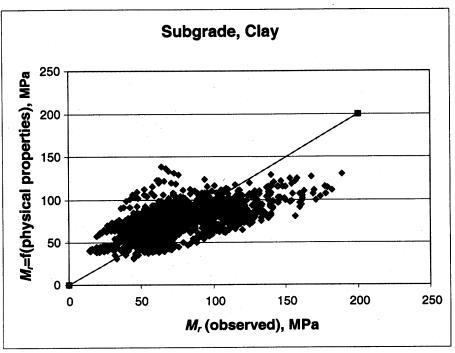


Figure 31. Graphical comparison of the predicted and measured resilient modulus for the fine-grained clay soils.

Figure 32 shows a comparison of the calculated M_R between the test pit and augered samples using the regression equations to estimate the k-coefficients. A bias is present in the calculated M_R values between the test pit and augered samples and supports the previous observation that there is an effect of sampling technique for the crushed stone base materials included in the LTPP database.

Figure 33 shows the comparison of the predicted M_R using the regression models developed for the different sampling techniques for sand. The error in the calculated M_R using the physical properties overshadows any difference caused by the different sampling techniques used.

The physical properties correlated to the resilient modulus varied between the different base/subbase material groups. No one physical property was included for all material types. However, the liquid limit, plasticity index, and the amount of material passing the smaller sieve sizes are important for the lower strength unbound base/subbase materials, while a measure of the moisture content and density are important for the higher strength materials. The amount of material passing the larger sieve sizes are related to the resilient modulus of the unbound base/subbase materials with the larger aggregate particles, as expected.

Until additional test results become available to improve or confirm these relationships, it is recommended that at least some resilient modulus tests be performed to measure the M_R for unbound pavement materials and soils.

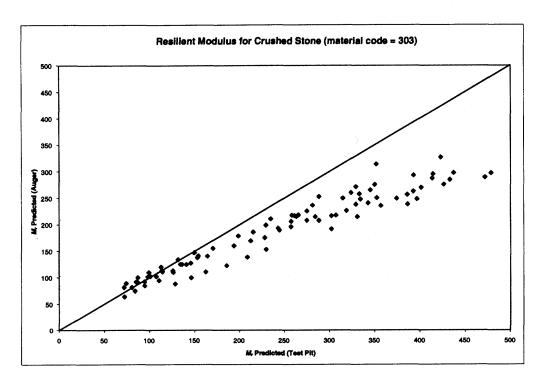


Figure 32. Comparison of the resilient modulus predicted from the data sets for crushed stone materials sampled from the test pit and auger locations.

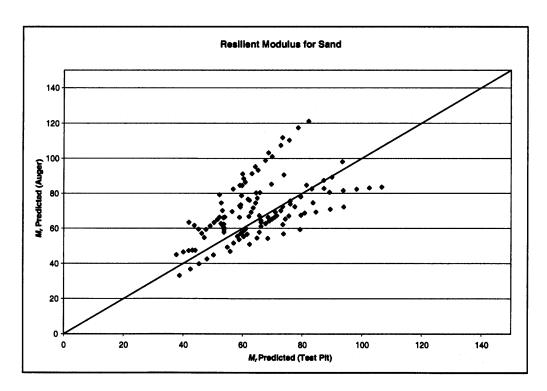


Figure 33. Graphical comparison of the calculated M_R using the regressed k-coefficients from the physical properties of the sand soil group sampled from augers and test pits.

CHAPTER 5. SUMMARY AND FUTURE RECOMMENDATIONS

Repeated-load resilient modulus tests are being performed on all unbound pavement materials and soils from the SPS and GPS test sections included in FHWA's LTPP program in accordance with LTPP test protocol P46. The overall goal of this study was to complete a detailed review of the LTPP M_R data and to identify potential anomalies and bias in those data. To accomplish that goal, correlation studies and regression analysis were completed in evaluating M_R test results. The correlation and regression studies included:

- Regression of the k-coefficients of equation 3.
- Comparison of the distributions of each k-coefficient for different data groups to identify any bias or differences between different data sets.
- Identification of the physical properties and other parameters that affect the response characteristics of the materials and soils tested.

FINDINGS AND OBSERVATIONS

The following is a summary of the findings and recommendations from this study:

- A total of 2,014 M_R tests of unbound pavement materials and soils have a Level E data status, while 1,594 tests have not yet obtained a Level E status in the LTPP database as of the October 2000 data release. It is expected that the number of completed M_R tests with a Level E status will significantly increase in future data releases.
- Constitutive equation 3 was found to be an excellent fit to the M_R test results included in the LTPP database. Specifically, almost 92 percent of the LTPP M_R test results have response characteristics that can be accurately simulated by constitutive equation 3. Constitutive equation 3 is the equation selected for use in development of the 2002 Design Guide. It is important to note that the values for the k_1 coefficient reported herein from the regression studies were determined using units of kPa for the pressure and stress parameters and units of MPa for the M_R .
- Coefficient k_6 (pore-water pressure or cohesion term) in equation 3 was found to be zero for more than 50 percent of the M_R tests. The non-zero values of k_6 were highly variable and have a uniform distribution. Thus, k_6 was assumed to be zero for all of the correlation studies and analyses performed on the M_R test data. This assumption should be checked and confirmed as additional M_R test results reach a Level E data status in the LTPP database.
- Coefficient k_3 was found to be zero for nearly 25 percent of the M_R tests performed on the unbound aggregate base/subbase materials and about 10 percent of the tests performed on the coarse-grained subgrade soils.

- There were $185 M_R$ tests (approximately 8 percent) that were flagged with potential anomalies. Most of the anomalous tests (103 of 185 flagged tests) were defined as a type 4 anomaly. A type 4 anomaly exhibits a different stress sensitivity between the different confining pressures. Some of these differences are large enough that the higher confining pressure will result in a lower M_R than a lower confining pressure at the same repeated vertical load. Samples that exhibit this type of anomaly should be retested.
- Sampling technique (auger versus test pit samples) does have an effect on the M_R test results for the uncrushed gravel and crushed stone base/subbase materials. No significant difference was found between the augered and test pit samples of the other base/subbase materials.
- Sampling technique also has an effect on the M_R test results for the subgrade soils. However, only one of the k-coefficients regressed from the M_R test data for the augered and test pit samples were found to be different for the coarse-grained soils and no difference was found for the fine-grained soils. Conversely, at least one of the k-coefficients was found to be different for all soil groups when comparing undisturbed and disturbed test specimens. Multiple k-coefficients (including k_I) were found to be different for the clay soils. Thus, it appears that there is a significant difference in the M_R test results for selected data groups that can be attributed to, or explained by, the use of different sampling techniques. These data groups include undisturbed versus disturbed test specimens for the clay soils and augered versus test pit specimens for the crushed stone base/subbase materials. At a minimum, these data groups should be considered as different populations of M_R test data.
- The physical properties correlated to resilient modulus varied between the different materials and soils. No one physical property was included for all materials and soils. However, the following summarizes the properties related to the k-coefficients for many of the data groups:
 - ➤ Liquid limit, plasticity index, and the amount of material passing the smaller sieve sizes were found to be important as related to the resilient modulus for the lower strength unbound aggregate base/subbase materials, while the moisture content and density were important as related to the higher strength materials.
 - > The amount of material passing the larger sieve sizes was important for the unbound aggregate base/subbase materials with larger aggregates.
 - Percent clay and test specimen moisture content or density are important for all soil groups.
 - Percent silt was important for all soil groups except gravel.
- The statistics for all models relating the resilient modulus to physical properties were fair to good for most data groups. Breaking the data groups into subgroups by sampling technique and material or soil type did improve on the regression statistics. Thus, the primary result from these regression studies is that the resilient modulus can be reasonably predicted from those physical properties that are included in the LTPP database. It should be noted that

these correlation and regression studies did not consider any effect that may have been caused by the use of different testing contractors.

RECOMMENDATIONS

Two important recommendations are a result of this study:

- 1. The review process identified in chapter 2 should be performed on the resilient modulus test results after each test is completed. In other words, the review process to identify anomalous data should become a part of the QC process, but the review should be performed immediately after testing. Retests can then be scheduled and performed for those tests that are flagged.
- 2. The findings and observations from this study should be verified and confirmed after all M_R tests have been completed, checked through the QC process, and have reached a Level E data status in the LTPP database.

The final recommendation or suggestion is to determine if there is any effect or bias in the resilient modulus test results between the different testing contractors (i.e., operator- or equipment-dependent). The bias for each prediction model was provided in appendix E. The resilient modulus data should be studied in more detail to identify any causes of the bias that appear to be material- and/or stress-state-dependent.

APPENDIX A.

SUMMARY OF k-COEFFICIENTS FOR THE LTPP RESILIENT MODULUS TESTS

Appendix A, table 16, provides a tabulation of the k-coefficients that were determined for each resilient modulus test using nonlinear regression techniques for the "universal" constitutive equation. Various statistical parameters are also tabulated for each test. These statistical parameters include the following:

RMSE = Root Mean Squared Error

MSE = Mean Squared Error

 R^2 S_e/S_y

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials.

State	SHRP	Layer	Test	Loc.	Sample				No.				_	
Code	ID	No.	No.	No.	No.	k1	k2	k3	Points	Std Dev(M _R)	RMSE	MSE	R²	S _e /S _y
1	0101		2	B6	BS06	0.7371	0.1236	-0.7748	15	4.1656	2.0358	4.1447	0.9991	0.4887
1	0102		2	B7	BS07	0.7810	0.1497	-0.4579	15	4.3337	2.4088	5.8023	0.9990	0.5558
1	0103 0106	1	2	B5 B4	BS05 BS04	0.7471 0.7514	0.1952 0.1787	-1.2825 -0.2832	15 15	5.9738 4.6260	1.9974 1.8647	3.9898 3.4770	0.9991 0.9994	0.3344 0.4031
 	0100		2	B1	BS01	0.7514	0.1787	-1.0366	15	4.9454	1.4704	2.1620	0.9994	0.4031
1	0107	1	2	B2	BS02	0.7619	0.1612	-0.4410	15	4.1196	1.6944	2.8708	0.9995	0.4113
\vdash	0111	1	2	B3	BS03	0.7618	0.1344	-0.2691	15	4.1130	2.7063	7.3239	0.9988	0.6470
1	0502	1	1	TP1	BS55	0.6190	0.3902	0.0000	15	9.0806	1.9745	3.8986	0.9992	0.2174
1	0502	2	1	TP1	BG56	0.6188	0.5133	-0.0405	15	33.6647	1.1438	1.3084	0.9999	0.0340
1	0502	2	2	TP1	BG56	0.5948	0.4399	0.0000	15	9.8985	1.9707	3.8836	0.9991	0.1991
1	1001	2	2	TP1	BG56	0.7172	0.7705	-0.0458	15	78.1141	6.6861	44.7042	0.9987	0.0856
1	1001	2	2	TP1	BG57	0.7268	0.7067	-0.1472	15	62.5584	5.6975	32.4613	0.9988	0.0911
1	1011	1	1	A1	TS01	0.8228	0.1655	-2.2042	15	9.7575	4.6641	21.7535	0.9946	0.4780
1	1011	1	2	A2	TS03	1.7600	0.4354	-3.1476	15	25.0337	4.9273	24.2783	0.9984	0.1968
1	1011	2	1	BA*	BG**	0.9145	0.5503	0.0000	15	57.9386	4.5896	21.0643	0.9994	0.0792
1	1011	2	2	BA*	BG**	0.9613	0.6280	-0.1737	15	65.4470	5.6762	32.2189	0.9992	0.0867
1	1011	3	1	BA*	BG**	0.5700	0.9897	0.0000	15	103.5283	6.7758	45.9112	0.9990	0.0654
1	1019	1	1	A1	TS02	1.2501	0.4131	-1.2442	15	15.3623	5.3629	28.7604	0.9978	0.3491
1	1019		2	A2	TS03	0.5343	0.4178	0.0000	15	8.9320	3.2359	10.4713	0.9971	0.3623
1	1019	2	1	BA*	BG**	0.9962	0.6250	0.0000	15	80.1910	17.8706	319.3589	0.9934	0.2229
1	1019	2	1	TP1	BG55 TS01	0.7799 0.8648	0.6658 0.5048	-0.1396 -2.3917	15	61.1355	6.8790	47.3208	0.9984	0.1125
1	1021	1	2	A1 A2	TS03	1.2172	0.5048	-2.3817 -2.9302	15 15	12.6630 15.9592	4.1558	17.2709	0.9963 0.9966	0.3282 0.3173
+	1021	2	1	BA*	BG**	0.9483	0.6619	-2.9302 -0.1447	15	72.2560	5.0640 4.8052	25.6442 23.0902	0.9994	0.0665
+	1021	2	2	TP1	BG55	0.8984	0.7054	-0.2732	15	70.3500	8.9635	80.3441	0.9979	0.1274
H	3028	1	1	BA*	BS**	1.2131	0.2656	0.0000	15	24.3307	21.2344	450.8977	0.9750	0.8727
1	3028	1	2	BA*	BS**	1.8894	0.2760	-2.2448	15	20.6635	2.8790	8.2887	0.9996	0.1393
1	3028	2	1	BA*	BG**	1.4464	0.5184	-0.0799	15	77.6224	17.7199	313.9942	0.9956	0.2283
1	3028	2	2	BA*	BG**	1.2310	0.7180	-0.6733	15	76.8463	22.2049	493.0587	0.9905	0.2890
1	3028	3	1	BA*	BG**	1.0271	0.6810	0.0000	15	90.4006	11.0833	122.8406	0.9979	0.1226
1	3028	3	2	BA*	8G**	1.5955	0.5814	0.0000	15	110.8525	14.2134	202.0195	0.9982	0.1282
1	3998	1	2	BA*	BS**	1.0637	0.3231	-1.0555	15	10.6735	3.7247	13.8734	0.9986	0.3490
1	3998	3	1	BA1	BG**	0.9738	0.5864	-0.2905	15	52.9351	6.8765	47.2866	0.9985	0.1299
1	3998	3	2	BA4	BG04	0.8006	0.6053	-0.2377	14	45.7415	3.5012	12.2582	0.9994	0.0765
1	4007	1	1	BA*	BS**	0.8141	0.4355	-3.0154	15	12.1330	4.3485	18.9090	0.9944	0.3584
1	4007	1	2	BA*	BS**	1.3948	0.2649	-2.8767	15	17.6589	2.3832	5.6795	0.9994	0.1350
1	4007	2	1	BA*	BG**	0.9494	0.5808	-0.1435	15	57.4057	7.0918	50.2932	0.9985	0.1235
1	4007 4007	3	2	BA*	BG**	0.8383	0.5634	0.0000	15	54.5472	10.8640	118.0265	0.9959	0.1992
+	4007	3	2	BA*	BG**	1.3816 0.9497	0.5590 0.7222	0.0000	15 15	91.1401 94.7404	12.7308 13.2385	162.0725 175.2568	0.9979 0.9969	0.1397 0.1397
1	4073	1	1	BA*	BS**	0.9002	0.1355	-0.2725	15	6.4609	5.2374	27.4301	0.9968	0.1397
1	4073	<u> </u>	2	A2	TS03	0.7229	0.1997	0.0000	15	16.3509	15.4884	239.8912	0.9618	0.9473
1	4073	3	1	BA*	BG**	0.7225	0.1887	0.0000	15	84.1259	81.9652	6718.2890	0.7186	0.9743
1	4073	3	2	BA*	BG**	0.8174	0.7952	-0.1003	15	90.1776	6.7010	44.9029	0.9990	0.0743
1	4084	1	1	A1	TS01	0.8795	0.1582	-0.4664	15	5.0256	2.5857	6.6857	0.9991	0.5145
1	4084	1	2	BA*	BS**	1.0375		-0.5501	15	10.1901	4.1911	17.5656	0.9984	0.4113
1	4084	2	1	BA*	BG**	0.5990	0.7892	-0.1143	. 15	63.8606	3.1233	9.7553	0.9996	0.0489
1	4084	2	2	BA*	BG**	0.7972	0.5885	0.0000	15	69.4017	50.4695	2547.1710	0.9121	0.7272
1	4084	3	1	BA*	BG**	0.6778	0.7146	0.0000	15	64.6516	9.1687	84.0648	0.9970	0.1418
1	4084	3	2	BA*	BG**	0.7800	0.8275	-0.0167	15	97.7705	5.2889	27.9730	0.9995	0.0541
1	4125	1	1	BA*	BS**	0.8059	0.1801	-0.3696	15	7.6389	6.1378	37.6726	0.9944	0.8035
1-1-1	4125	1	2	BA*	BS**	1.1292	0.2901	-1.0669	15	10.8659	4.6570	21.6877	0.9980	0.4286
1	4125	2	1	BA*	BG**	0.8139	0.6263	-0.1825	15	53.9916	5.5835	31.1760	0.9989	0.1034
1	4125	2	2	BA*	BG**	1.1805	0.5535	-0.7258	15	43.2580	15.0289	225.8680	0.9924	0.3474
1	4126 4126	1	2	A1 BA*	TS01 BS**	0.7751 0.7809	0.2980 0.4647	-1.6994 -1.1358	15 15	8.9400 10.8483	4.5929 3.5572	21.0945 12.6540	0.9951 0.9977	0.5137 0.3279
1	4126	2	1	BA*	BG**	1.0471	0.6218	0.0000	15	80.4536	7.2282	12.6540 52.2470	0.9977	0.3279
	4126	2	2	BA*	BG**	0.6490	0.7825	0.0000	15	73.9168	7.9356	62.9744	0.9980	0.1074
1	4127	1	1	A1	TS01	1.1422	0.3306	-2.7938	15	14.2538	2.6335	6.9355	0.9990	0.1848
1	4127	1	2	BA*	BS**	1.3265	0.0829	-1.7482	15	13.6162	6.0374	36.4507	0.9969	0.4434
1	4127	2	1	BA*	BG**	0.7026	0.7705	0.0000	15	77.0454	8.5414	72.9563	0.9980	0.1109
1	4127	2	2	BA*	BG**	0.5337	0.7125	0.0000	15	52.2137	16.6248	276.3824	0.9845	0.3184
1	4129	1	1	BA*	BS**	1.1543	0.3027	-2.8987	15	15.1453	3.7856	14.3305	0.9979	0.2499
1	4129	1	2	TP1	BS55	0.8461	0.1659	-0.9872	15	7.4661	5.4494	29.6957	0.9951	0.7299
	4129	2	2	TP1	BG56	0.8022	0.8315	-0.6935	15	62.8943	5.7104	32.6087	0.9989	0.0908

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

	T											····		
State	SHRP	Layer	Test	Loc.	Sample	k1	k2	k3	No. Points	Std	RMSE	MSE	R²	c /c
Code	ID	No.	No.	No.	No.					Dev(M _R)				S _e /S _v
1	4129	3	1	BA*	BG**	1.1371	0.6745	0.0000	15	100.0928	7.6607	58.6858	0.9992	0.0765
1	4129	3	2	TP1	BG55	1.0055	0.6922	0.0000	15	91.2690	10.4864	109.9647	0.9981	0.1149
1	4155	1	_1_	BA*	BS**	1.0195	0.7429	-0.7080	15	28.4700	15.6947	246.3234	0.9799	0.5513
1	4155	1	2	A2	TS03	2.0801	0.4302	-2.2159	15	26.3755	5.4274	29.4568	0.9989	0.2058
1	4155	2	_1_	BA*	BG**	1.2935	0.5532	0.0000	15	84.6003	16.1815	261.8409	0.9961	0.1913
1	4155	2	2	BA*	BG**	1.1041	0.6834	-0.0930	15	92.5873	6.6830	44.6630	0.9993	0.0722
1	5008	1	_1_	A1	TS01	1.0711	0.2380	-3.5698	15	16.1103	5.9652	35.5836	0.9927	0.3703
1	5008	1	2	A2	TS03	0.7008	0.3522	-1.7352	15	8.1650	3.1471	9.9044	0.9972	0.3854
1	6012	1	1	A1	TS01	0.6492	0.3830	-0.5643	15	8.5206	3.4496	11.8995	0.9973	0.4049
1	6012	1	2	A2	TS03	0.7752	0.5601	-1.7078	15	11.9012	3.1382	9.8480	0.9979	0.2637
1	6012	2	1	BA*	BG**	0.8778	0.5954	-0.1138	15	57.2686	4.1081	16.8766	0.9995	0.0717
1	6012	2	2	TP1	BG55	1.0494	0.7489	-0.4188	15	80.4753	15.7269	247.3352	0.9952	0.1954
1	6019	1	1	A1	TS01	0.7928	0.3903	-0.9354	15	9.8595	3.9358	15.4902	0.9973	0.3992
1	6019	1	2	BA*	BS**	0.8190	0.4979	-0.6530	15	12.7906	2.6269	6.9006	0.9990	0.2054
1	6019	2	1	BA*	BG**	0.7012	0.7925	-0.3774	15	61.9985	3.7865	14.3375	0.9995	0.0611
1	6019	2	2	BA*	BG**	0.8196	0.6743	-0.2775	15	57.5630	5.5761	31.0933	0.9989	0.0969
4	0114	1	2	B309	BS09	1.3826	0.2588	-1.5020	15	12.2991	1.9360	3.7482	0.9997	0.1574
4	0115	1	2	B303	BS03	0.9022	0.5984	-2.0181	15	14.4413	3.1117	9.6824	0.9983	0.2155
4	0213	1 .	2	B311	BS11	0.8746	0.5885	-2.1306	15	13.6249	2.7469	7.5452	0.9986	0.2016
4	0216	1	2	B306	BS06	0.9361	0.5105	-1.9370	15	13.0978	2.5639	6.5734	0.9989	0.1957
4	0217	1	2	B309	BS09	0.7398	0.6783	-1.8964	15	13.2388	2.6095	6.8093	0.9984	0.1971
4	0222	1	2	B303	BS03	0.9586	0.6219	-2.2077	14	15.2084	1.9614	3.8471	0.9994	0.1290
4	0223	1	2	B308	BS08	0.8278	0.7128	-1.8388	14	16.0995	3.0501	9.3029	0.9983	0.1895
4	0608	1	2	B*	BS**	0.6853	0.4443	-1.5710	15	8.7977	2.7190	7.3927	0.9980	0.3091
4	1001	1	1	BA*	BS**	0.4998	0.4101	-1.1300	15	5.9936	1.5315	2.3456	0.9989	0.2555
4	1001	1	2	TP1	BS91	0.7853	0.3092	-0.9687	15	7.4687	2.2560	5.0894	0.9991	0.3021
4	1003	1	1	BA*	BS**	0.8319	0.3211	-1.1004	15	7.9000	1.4748	2.1751	0.9996	0.1867
4	1003	1	2	TP1	BS92	0.7813	0.2274	-1.4264	15	6.6783	1.6462	2.7100	0.9994	0.2465
4	1006	1	1	BA*	BS**	0.6460	0.4283	-1.5221	15	8.2016	2.5962	6.7405	0.9979	0.3166
4	1006	<u> </u>	2	TP1	BS92	0.8157	0.2828	-0.9575	15	7.1581	2.2317	4.9804	0.9992	0.3118
4	1006	2	2	TP1	BG91	0.4255	0.5981	-0.9573	15	28.7498	1.3155	1.7306		0.0458
4	1007	1	1	BA*	BS**	0.7197	0.2933	-1.0219	15	6.8125			0.9998	
	1007	1	2	TP1	BS91	0.6616		-1.5365	15		2.6900	7.2359	0.9984	0.3949
4					BS**		0.5148			9.4708	1.8007	3.2424	0.9991	0.1901
4	1015	1	1	BA*		0.9300	0.2290	0.0000	15	8.3995	3.0906	9.5517	0.9990	0.3679
4	1015	1	2	TP1	BS92	1.0206	0.1451	0.0000	15	7.1933	4.7344	22.4147	0.9981	0.6582
4	1016	2	1	BA*	BG**	0.8553	0.4920	-0.4112	15	32.5506	10.2399	104.8550	0.9940	0.3146
4	1017	1	1	BA*	BS**	1.0919	0.1256	0.0000	15	10.0247	8.6811	75.3617	0.9945	0.8660
4	1018	1	2	TP1	BS92	0.3435	0.3740	-2.3961	15	4.2840	1.1042	1.2193	0.9983	0.2578
4	1018	2	1	BA*	BG**	1.0551	0.2786	-0.1404	15	21.7065	1.3288	1.7656	0.9999	0.0612
4	1021		1	BA*	BS**	0.5579	0.6154	-1.3122	15	9.7458	2.1006	4.4126	0.9984	0.2155
4	1021		2	TP1	BS92	0.5287	0.6330	-1.6658	15	9.1766	2.3003	5.2912	0.9977	0.2507
4	1022	_1_	2	TP1	BS93	0.9034	0.2029	0.0000	15	7.0697	2.2604	5.1096	0.9995	0.3197
4	1024	11	1	BA*	BS**	1.0553		0.0000	15	10.2502	5.3602	28.7313	0.9978	
4	1024		2	TP1	BS92	1.0418	0.1763		15	5.7677	1.3073	1.7091	0.9998	0.2267
4	1024	2	1	BA*	BG**	1.3847	0.2193		15	26.1743	6.0040	36.0478	0.9989	
4	1034	1	2	TP1	BS92	0.7936		-1.5099	15	8.9016	2.0526	4.2131	0.9991	0.2306
4	1036	1	2	TP1	BS70	0.7304		-0.7325	15	6.2587	2.2873	5.2318	0.9990	0.3655
4	1062	1	1	BA*	BS**	0.6933	0.2804	-0.2882	15	6.8334	2.6882	7.2262	0.9986	0.3934
4	1065	1	1	BA*	BS**	0.8859	0.2622	-0.4837	15	7.4782	2.4435	5.9709	0.9993	
4	6053	1	1	BA*	BS**	0.7658	0.3751	-1.3903	15	8.3569	1.4713	2.1647	0.9995	0.1761
4	6053	1	2	TP1	BS92	0.7798		-0.6940	15	7.9809	2.5445	6.4745	0.9989	0.3188
4	6054	1	1	BA*	BS**	0.6366	0.5542	-1.5157	15	9.7897	2.1944	4.8154	0.9986	0.2242
4	6054	1	2	TP1	BS92	0.6613		-1.2380	15	9.6204	2.0383	4.1547	0.9989	0.2119
4	6054	2	1	BA*	BG**	0.4914	0.5684	-0.0938	15	29.7610	4.0400	16.3213	0.9982	0.1357
4	6055	1	1	BA1	BS63	0.8699	0.2678	-0.5267	15	7.7263	3.1824	10.1275	0.9987	0.4119
4	6060	11	2	TP1	BS92	1.0603	0.1957	-0.7465	15	6.7068	1.7628	3.1075	0.9997	0.2628

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

	1				т									
State	SHRP	Layer	Test	Loc.	Sample		ا ما	40	No.	Std	RMSE	MSE	R²	s./s,
Code	ID	No.	No.	No.	No.	k1	k2	k3	Points	Dev(M _R)				0.4497
4	7079	_1_	1	TP1	BG92	0.7094	0.1720	0.0000	15	4.9828	2.2408	5.0212	0.9991	
4	7614	1	1	BA*	BS**	0.5153	0.6683	-1.1108	15	10.0887	1.9554	3.8236	0.9985	0.1938
4	7614	1	2	BA*	BS**	0.5464	0.6406	-1.4908	15	9.7356	2.2565	5.0919	0.9980	0.2318
5	0809	1	1	A1	TS01	1.1977	0.2272	-1.3215	15	9.5534	1.3115	1.7199	0.9998	0.1373
5	0809	1	2	B2	BS02	1.0976	0.2637	-1.6926	15	10.3730	1.5268	2.3312	0.9997	0.1472
5	0810	1	2	B3	BS03	0.7958	0.4785	-1.7610	15	10.6583	2.0967	4.3962	0.9991	0.1967
5	3011	1	2	A2	TS03	0.8035	0.1570	-0.8411	15	6.0174	4.0411	16.3302	0.9972	0.6716
5	3048	11	1	A1	TS01	0.5393	0.4559	-4.7896	15	8.1492	1.5051	2.2654	0.9979	0.1847
5	3048	1	2	A2	TS03	0.7728	0.0727	-0.0652	15	4.3403	3.9048	15.2474	0.9977	0.8997
5	3058	1	1	A1	TS02	0.7875	0.2825	-3.7571	15	10.8575	1.4862	2.2089	0.9992	0.1369
5	3058	1	2	A2	TS04	0.5751	0.5593	-1.4822	15	8.7576	1.4011	1.9631	0.9993	0.1600
5	3059	1	1	A1	TS01	0.7745	0.3783	-0.6541	15	8.9815	1.3285	1.7650	0.9997	0.1479
5	3059	1	2	A2	TS03	0.6421	0.5358	-0.8646	15	10.3293	1.8870	3.5607	0.9991	0.1827
5	3073	1	1	BA*	BS**	1.2130	0.1555	-0.9743	15	11.1471	8.3210	69.2397	0.9945	0.7465
.5	3073	1	2	A2	TS03	1.7246	0.4174	-1.9475	15	20.9955	3.3692	11.3516	0.9994	0.1605
5	3073	2	2	BA*	BG**	0.7711	0.5753	-0.0042	15	51.6329	3.3592	11.2845	0.9996	0.0651
5	3073	3	2	BA*	BG**	0.9091	0.6159	-0.5333	15	44.9817	8.4644	71.6458	0.9970	0.1882
5	3074	1	1	A1	TS01	0.5447	0.4050	-3.2925	15	7.6239	2.2466	5.0474	0.9966	0.2947
5	3074	1	2	A2	TS03	0.6514	0.3682	-2.2002	15	8.1929	3.0916	9.5578	0.9965	0.3773
5	4019	1	1	A1	TS01	0.5482	0.4429	-0.8866	15	7.3601	1.6951	2.8734	0.9990	0.2303
5	4019	1	2	A2	TS03	0.4647	0.4165	-0.4198	15	6.4343	1.2036	1.4486	0.9994	0.1871
5	4019	2	1	BA*	BG**	0.5626	0.6400	-0.0409	15	43.5697	2.2207	4.9314	0.9997	0.0510
5	4019	2	2	BA*	BG**	0.6635	0.6286	-0.2518	15	42.0982	3.3810	11,4309	0.9993	0.0803
5	4021	1	1	A1	TS01	0.5824	0.0000	-0.7731	15	7.4661	6.9580	48.4139	0.9841	0.9319
5	4021	1	2	A2	TS03	0.9402	0.4058	-3.6363	15	13.8192	4.1893	17.5499	0.9956	0.3031
5	4021	2	1	BA*	BG**	0.9836	0.6125	-0.3278	15	56.0750	7.3651	54.2453	0.9984	0.1313
5	4021	2	2	BA*	BG**	0.9931	0.6600	-0.3497	15	63.3222	8.7766	77.0290	0.9980	0.1386
5	4021	3	1	BA1	BG01	0.8281	0.5985	0.0000	15	60.2221	5.7339	32.8770	0.9989	0.0952
5	4021	3	2	BA*	BG**	1.0234	0.6369	-0.0277	15	79.9328	3.0210	9.1261	0.9998	0.0378
		1	2		TS03	0.4008	0.0827	-3.4340	15	5.6273	2.6811	7.1881	0.9909	0.4764
5	4023			A2	TS03			-1.9907	15	6.6833	2.0732	4.2980	0.9985	0.3102
5	4046	1	1	A1		0.6732	0.1544			11.5293	1.5947	2.5429	0.9991	0.1383
5	4046	1	2	A2	TS03	0.8173	0.2922	-3.8799	15				0.9964	0.7366
5	5803	1	1	BA*	BS**	0.6256	0.1622	0.0000	15	5.4467	4.0120	16.0961	0.9988	0.7368
5	5803	1	2	BA*	BS**	0.7263	0.2834	-0.1316	15	7.5957	2.7507	7.5666		
5	5803	2	2	BA*	BG**	0.8995	0.5434	-0.7994	15	30.2501	10.1542	103.1070	0.9935	0.3357
. 5	5805	1	1	BA*	BS**	1.6165	0.3330	-1.6501	15	16.8797	3.4987	12.2411	0.9994	0.2073
5	5805	1	2	BA*	BS**	0.6384	0.2468	0.0000		7.3310	4.5288	20.5105	0.9958	0.6178
6	1253	1	1	BA*	BS**	0.8830	0.2074	0.0000		8.3341	5.0314	25.3147	0.9972	0.6037
6	2002	1	1	BA*	BS**	0.5407	0.4460	-1.4504	-	6.8813	1.6833	2.8334	0.9988	0.2446
6	2004	1	1	BA*	BS**	0.5721	0.4024	-2.1477	15	7.3549	2.4186	5.8499	0.9972	0.3288
6	2004	2	1	BA*	BG**	0.4943	0.6108	-0.1061	15	33.3267	2.5404	6.4536	0.9994	0.0762
6	2004		2	TP1	BG91	0.5026				34.1735			0.9997	0.0529
6	2038	1	1	BA⁺	85**	0.4972				8.8919			0.9981	
6	2038	1	2	TP1	BS92	0.6524			1	10.1151			0.9982	
6	2051	1	2	TP1	BG55	1.0052				7.7662	3.5491	12.5962	0.9989	
6	2053	1	1	A1	TS01	0.8825				4.6260	1.5040		0.9997	
6	2647	2	1	BA*	BG**	0.5444			 	27.2446	4.3768		0.9980	
6	3010	1	2	BA*	BS**	1.3127				14.8622	10.1830		0.9949	
6	3013	1	1	BA*	BS**	0.8532		-		5.7296	2.4640		0.9991	0.4300
6	3013	1	2	BA*	BS**	0.4936				9.0275	1.4499		0.9991	0.1606
6	3019		1	BA*	BS**	0.7663				10.4449	1.4168	2.0072	0.9997	0.1356
6	3019	1	2	BA⁺	BS**	0.7604				7.2058	2.1095		0.9990	
6	3019	2	1	BA*	BG**	0.5335				28.8139	3.7393		0.9985	
6	3019	2	2	BA*	BG**	1.0167				14.1596	4.1284	17.0438	0.9989	
6	3021		1	BA*	BS**	0.5388	1			8.7723	2.0862	4.3521	0.9982	
6	3021	1	2	BA⁺	BS**	0.5064	0.6617	-1.0518	15	9.8043	1.9581	3.8342	0.9985	0.1997

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

6 3021 2 1 BA* BG** 0.4928 0.6465 -0.2440 15 32.9003 2.5309	MSE 6.4056 23.0112 5.9355	R ² 0.9994	S₅/S _γ 0.0769
6 3021 2 2 BA* BG** 0.5105 0.5973 -0.2913 15 28.6124 4.7970 6 3024 1 1 BA* BS** 0.5822 0.5992 -1.2084 15 9.9676 2.4363 6 3024 1 2 BA* BS** 0.7776 0.2866 -1.3810 15 7.5612 2.8038 6 3030 1 1 BA* BS** 0.8068 0.1653 -1.0192 15 5.8611 2.9328 6 3030 1 2 BA* BS** 0.9139 0.1248 -0.9845 15 6.0340 2.8551 6 3042 1 1 A1 TS01 0.6981 0.2199 -0.9301 15 5.3745 2.4178	23.0112	0.9994	1 0 0760
6 3024 1 1 BA* BS** 0.5822 0.5992 -1.2084 15 9.9676 2.4363 6 3024 1 2 BA* BS** 0.7776 0.2866 -1.3810 15 7.5612 2.8038 6 3030 1 1 BA* BS** 0.8068 0.1653 -1.0192 15 5.8611 2.9328 6 3030 1 2 BA* BS** 0.9139 0.1248 -0.9845 15 6.0340 2.8551 6 3042 1 1 A1 TS01 0.6981 0.2199 -0.9301 15 5.3745 2.4178			
6 3024 1 2 BA* BS** 0.7776 0.2866 -1.3810 15 7.5612 2.8038 6 3030 1 1 BA* BS** 0.8068 0.1653 -1.0192 15 5.8611 2.9328 6 3030 1 2 BA* BS** 0.9139 0.1248 -0.9845 15 6.0340 2.8551 6 3042 1 1 A1 TS01 0.6981 0.2199 -0.9301 15 5.3745 2.4178	5.9355	0.9974	0.1677
6 3030 1 1 BA* BS** 0.8068 0.1653 -1.0192 15 5.8611 2.9328 6 3030 1 2 BA* BS** 0.9139 0.1248 -0.9845 15 6.0340 2.8551 6 3042 1 1 A1 TS01 0.6981 0.2199 -0.9301 15 5.3745 2.4178		0.9981	0.2444
6 3030 1 2 BA* BS** 0.9139 0.1248 -0.9845 15 6.0340 2.8551 6 3042 1 1 A1 TS01 0.6981 0.2199 -0.9301 15 5.3745 2.4178	7.8610	0.9983	0.3708
6 3042 1 1 A1 TS01 0.6981 0.2199 -0.9301 15 5.3745 2.4178	8.6010	0.9984	0.5004
	8.1513	0.9988	0.4732
6 2042 1 2 A2 TQ02 0.0515 0.2004 -0.2022 15 0.4724 0.2272	5.8458	0.9986	0.4499
	5.4654	0.9993	0.2759
6 6044 1 1 BA* BS** 0.9247 0.1324 0.0000 15 5.4406 3.0952	9.5801	0.9990	0.5689
6 6044 1 2 TP1 BS93 0.7369 0.1989 -2.3643 15 8.2537 1.3385	1.7916	0.9994	0.1622
6 7452 1 2 A2 TS03 0.6432 0.3418 -1.2512 15 6.7767 2.2228	4.9408	0.9985	0.3280
6 7455 1 1 BA1 BS01 0.8728 0.1182 0.0000 15 4.6547 2.7182	7.3885	0.9991	0.5840
6 7456 1 2 A2 TS03 0.8811 0.0643 -0.4024 15 2.4339 0.8551	0.7311	0.9999	0.3513
6 7493 1 1 BA* BS** 0.5549 0.6356 -1.0915 15 10.2181 1.9574	3.8316	0.9987	0.1916
6 8149 1 2 TP1 BS91 0.9513 0.1694 -0.1897 15 5.8538 2.5974	6.7465	0.9993	0.4437
6 8150 1 2 TP1 BS92 0.4707 0.6219 -1.1504 15 8.4080 1.6630	2.7654	0.9987	0.1978
6 8150 2 1 BA* BG** 0.4453 0.6237 -0.1413 15 30.1870 2.5970	6.7446	0.9992	0.0860
6 8151 1 2 TP1 BS91 0.5315 0.5758 -0.8936 15 9.1063 1.2846	1.6502	0.9994	0.1411
6 8153 1 1 BA* BS** 0.7594 0.1639 -0.7032 15 4.4315 1.7877	3.1959	0.9994	0.4034
6 8153 1 2 TP1 BS94 0.6883 0.1763 -2.0942 15 7.0488 0.9471	0.8969	0.9997	0.1344
6 8153 1 3 TP1 BG93 1.1350 0.1914 -0.3936 15 10.6225 4.4039	19.3948	0.9988	0.4146
6 8153 2 2 TP1 BG93 0.4428 0.5861 -0.0425 15 29.6008 1.1971	1.4332	0.9998	0.0404
6 8153 2 3 TP1 BG93 1.1350 0.1914 -0.3936 15 10.6225 4.4039	19.3948	0.9988	0.4146
6 8153 3 2 TP1 BG92 0.4420 0.5875 -0.0444 15 29.5751 1.1627	1.3520	0.9998	0.0393
6 8201 1 1 BA* BS** 0.5413 0.5647 -1.9937 15 8.5161 2.6525	7.0357	0.9966	0.3115
6 8201 1 2 TP1 BS92 0.6662 0.3175 0.0000 15 8.0593 1.9978	3.9911	0.9993	0.2479
6 8201 2 2 TP1 BG91 0.5414 0.6000 -0.2937 15 30.4806 4.0225	16.1808	0.9984	0.1320
6 8202 1 1 BA* BS** 0.4824 0.7120 -1.1406 15 9.9833 1.5382	2.3662	0.9990	0.1541
6 8202 1 2 TP1 BS91 0.3727 0.5896 -1.0324 15 6.6640 2.0966	4.3955	0.9967	0.3146
6 8534 1 1 BA* BS** 0.7072 0.2134 -1.4977 15 5.9096 0.5461	0.2982	0.9999	0.0924
6 8534 1 2 TP1 BS93 0.4252 0.3246 -2.6240 15 5.2915 1.2751	1.6259	0.9984	0.2410
6 8534 2 2 TP1 BG92 0.5610 0.5810 -0.0542 15 36.5819 1.4494	2.1009	0.9998	0.0396
6 8535 1 1 A1 TS01 0.5029 0.3376 -1.9250 15 5.5908 1.4715	2.1653	0.9987	0.2632
6 8535 1 2 A2 TS03 0.5417 0.3562 -1.3171 15 5.7005 1.3056	1.7045	0.9993	0.2290
6 9048 1 1 BA* BS** 0.5375 0.6285 -1.3856 15 9.4481 2.1530	4.6355	0.9982	0.2279
6 9048 1 2 BA* BS** 0.5465 0.6292 -1.3501 15 9.8377 2.8307	8.0129	0.9970	0.2877
6 9049 1 1 A1 TS01 0.7127 0.1235 -0.9651 15 4.0178 0.4537	0.2059	1.0000	0.1129
6 9049 1 2 A2 TS03 0.7360 0.1862 -1.2697 15 5.4746 1.1072	1.2259	0.9997	0.2022
8 0214 1 2 B2 BG02 1.1189 0.3250 -2.0816 14 12.3003 2.1884	4.7892	0.9994	0.1779
8 0217 1 2 B4 BG04 1.3112 0.1767 -1.4419 15 10.2377 1.1300	1.2770	0.9999	0.1104
8 0219 1 2 B3 BG03 1.3788 0.2140 -1.6695 15 12.2618 1.6644	2.7703	0.9998	0.1357
8 0221 1 2 B6 BG06 0.9585 0.1916 -2.3908 15 10.6023 0.9962	0.9925	0.9998	
8 0223 1 2 B7 BG07 0.6255 0.7108 -0.9095 14 13.8320 1.6283	2.6513	0.9994	0.1177
8 0224 1 2 B5 BG05 1.2216 0.2435 -1.5363 15 10.7491 1.4619	2.1371	0.9998	0.1360
8 0501 1 1 B* BS** 1.1849 0.2166 -1.2534 15 9.0370 1.0671	1.1387	0.9999	0.1181
8 0505 1 1 TP2 BS91 1.3927 0.2213 -0.9915 15 9.7688 0.9878	0.9757	0.9999	0.1011
8 0508 1 1 B* BS** 0.9520 0.1973 -2.2349 15 10.0915 1.3494	1.8208	0.9997	0.1337
8 1029 1 1 A1 TS01 0.9247 0.2617 -0.2430 15 8.4363 2.9342	8.6097	0.9991	0.3478
8 1029 1 1 BA* BS** 0.5784 0.2836 -1.3818 15 5.3301 1.4073	1.9804	0.9992	0.2640
8 1029 1 2 TP1 BS93 0.4591 0.6161 -1.8004 15 7.6083 1.8823	3.5430	0.9978	0.2474
8 1047 1 1 A1 TS01 0.8582 0.2892 -2.0809 15 9.2864 1.6277	2.6493	0.9994	0.1753
8 1047 1 1 BA* BS** 0.9428 0.1879 -0.1674 15 6.1085 1.5757	2.4828	0.9997	0.2579
8 1047 1 2 TP1 BS94 0.8107 0.1773 -1.0178 15 5.3966 1.3862	1.9216	0.9997	0.2569
	19.4298	0.9973	0.5737
8 1053 1 2 A2 JS03 0.5975 0.3772 -1.4540 15 6.5444 1.0662	1.1369	0.9996	0.1629
8 1053 1 2 TP1 BS93 0.7768 0.1609 -1.4560 15 6.2503 1.3835	1.9141	0.9996	0.2213

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

	T								r	1				_
State	SHRP	Layer	Test	Loc.	Sample				No.	Std			,	
Code	ID	No.	No.	No.	No.	k1	k2	k3	Points	Dev(M _R)	RMSE	MSE	R ²	S _e /S _v
8	1057	1	2	A2	TS03	0.3642	0.3101	-3.3758	15	5.0775	1.3795	1.9029	0.9969	0.2717
8	1057	1	2	TP1	BG93	0.6293	0.3166	-1.8557	15	6.7153	1.2149	1.4759	0.9995	0.1809
8	2008	1	1	A1	TS01	0.6497	0.3169	-3.1272	15	8.5790	1,4344	2.0575	0.9990	0.1672
8	2008	1	1	BA*	BS**	0.6313	0.1892	-1.2603	15	4.9058	1.7088	2.9201	0.9991	0.3483
8	2008	1	2	TP1	BS93	0.6182	0.1704	-0.9772	15	4.2235	1.8128	3.2863	0.9990	0.4292
8	2008	2	2	TP1	BG92	1.3752	0.2144	0.0000	15	24.9279	4.2035	17.6696	0.9995	0.1686
8	6002	1	1	A1	TS01	0.8081	0.1188	-1.0092	15	5.0351	1.9369	3.7515	0.9993	0.3847
8	6002	1	1	BA*	BS**	0.6856	0.1167	-2.6215	15	8.1211	0.9616	0.9247	0.9996	0.1184
8	6002	1	2											0.1184
				A2	TS03	0.6370	0.1238	-1.4454	15	5.0803	1.4370	2.0649	0.9993	
8	6002	1	2	TP1	BS92	0.7331	0.1433	-0.7818	15	3.9857	1.2319	1.5176	0.9997	0.3091
8	6013	1	1	BA*	BS**	0.6407	0.3661	-0.3677	15	7.8237	2.1590	4.6613	0.9990	0.2760
8	6013	11	2	TP1	BS93	1.1514	0.2051	0.0000	15	9.4315	3.7882	14.3503	0.9991	0.4017
8	6013	2	1	BA*	BG**	0.5359	0.5580	-0.0894	15	31.8523	1.9124	3.6571	0.9997	0.0600
8	6013	2	2	TP1	BG**	0.5387	0.5594	-0.0662	15	32.7039	2.0364	4.1469	0.9996	0.0623
8	7035	1	1	BA*	BS**	0.6074	0.3382	-2.7277	15	7.6669	1.2863	1.6546	0.9992	0.1678
8	7035	1	2	A2	TS04	0.5484	0.2235	-1.7124	15	5.3745	2.0893	4.3652	0.9979	0.3887
8	7035	1	2	BA*	BS**	0.6203	0.1806	-1.0651	15	4.4668	1.7725	3.1418	0.9990	0.3968
8	7035	2	1	BA*	BG**	0.4811	0.5986	-0.0881	15	31.9707	1.6310	2.6602	0.9997	0.0510
8	7035	3	1	BA*	BG**	0.4806	0.5932	-0.0714	15	31.7352	2.3839	5.6831	0.9994	0.0751
8	7035	3	2	BA*	BG**	0.7105	0.4240	-0.2531	15	23.7531				
											3.3991	11.5540	0.9990	0.1431
8	7036	1	1 1	A1	TS01	0.3881	0.5582	-2.8959	15	6.0929	1.7446	3.0437	0.9963	0.2863
8	7036	1	1	BA*	BS**	0.7979	0.2077	0.0000	15	6.1412	0.8793	0.7732	0.9999	0.1432
8	7036	1	2	A2	TS03	0.4793	0.3088	-2.6789	15	5.9745	1.3679	1.8710	0.9985	0.2289
8	7036	1	2	BA*	BS**	0.7042	0.2395	-1.0344	15	5.5403	1.7052	2.9077	0.9993	0.3078
8	7776	1	1	BA*	BS**	0.7249	0.3053	-0.6783	15	6.7273	1.4822	2.1968	0.9996	0.2203
8	7776	1	1	BA1	BS01	0.9382	0.2499	-0.7301	15	7.2585	1.9369	3.7517	0.9995	0.2669
8	7776	1	2	BA*	BS**	0.7562	0.2275	-0.5597	15	5.4362	1.6924	2.8641	0.9995	0.3113
8	7776	2	1	BA*	BG**	1.0640	0.2134	-0.1404	15	15.5649	3.2166	10.3466	0.9994	0.2067
8	7781	- 1	1	A1	TS01	0.6418	0.2204	-0.8799	15	4.7539	1.7793	3.1659	0.9991	0.3743
8	7781	1	1	BA*	BS**	0.7049	0.1353	-0.9915	15	4.6731	2.1478	4.6132	0.9989	0.4596
8	7781	i	2	BA*	BS**	0.7338	0.3807	-1.6433	15	8.3478	1.8657	3.4807	0.9991	0.2235
8	7783	1	2	TP1										
					BS93	0.2536	0.0824	-3.0950	15	3.7771	1.9410	3.7673	0.9876	0.5139
8	9019	1	1	A1	TS01	0.3696	0.3750	-0.8599	15	4.1346	0.9031	0.8155	0.9994	0.2184
8	9019	1	1	BA*	BS**	0.9485	0.2802	0.0000	15	12.3508	7.5625	57.1918	0.9947	0.6123
8	9019	1	2	A2	TS03	0.6984	0.2732	-1.9740	15	7.3140	1.5861	2.5157	0.9992	0.2169
8	9019	1	2	BA*	BS**	0.4042	0.5291	-2.3357	15	6.0922	2.1659	4.6913	0.9955	0.3555
8	9020	1	2	BA*	BS**	1.0004	0.1542	-0.7844	15	5.6627	1.8133	3.2881	0.9996	0.3202
9	4008	1	1	BA3	BS03	0.6505	0.3644	0.0000	15	9.8329	4.6889	21.9862	0.9958	0.4769
9	4008	1	2	BA*	BS**	0.5737	0.8205	-0.9856	15	14.2618	2.4301	5.9052	0.9984	0.1704
9	4020	1	1	BA2	BS02	0.7663	0.7455	-1.2817	15	16.2299	2.4766	6.1335	0.9989	0.1526
9	4020	2	1	BA*	BG**	0.5391	0.7107	-0.0837	15	48.4510	2.8189	7.9459	0.9995	0.0582
9	5001	1	1	BA2	BS02	0.5722	0.7457	0.0000	15	19.1067	10.7988	116.6134	0.9767	0.5652
10	0102	1	1	B2	BS02	0.4871	0.5315	-0.9233	15	7.7870	2.0947	4.3880	0.9981	0.2690
10	0102	1	2		BS02	0.5034	0.5382							
			$\overline{}$	B9				-0.2964	15	9.2644	1.3894	1.9306	0.9994	0.1500
10	0102	1	3	A5	TS09	0.5967	0.5457	-0.2679	15	11.1688	1.5807	2.4987	0.9994	0.1415
10	0103	1	2	B10	BS10	0.5404	0.5512	-0.6219	15	9.3859	1.5664	2.4536	0.9992	0.1669
10	0103	1	3	A9	TS17	0.5965	0.5502	-0.3580	15	10.9991	1.6094	2.5901	0.9994	0.1463
10	0103	1	1	В3	B\$03	0.8096	0.1229	-0.2659	15	3.9677	2.4820	6.1605	0.9991	0.6256
10	0104	1	1	B7	BS07	0.4675	0.6321	-0.4759	15	9.7209	1.2112	1.4671	0.9994	0.1246
10	0107	1	1	B1	BS01	0.6174	0.4327	-0.9619	15	8.0131	2.3818	5.6729	0.9984	0.2972
10	0107	1	2	B8	BS08	0.4873	0.5850	-0.1576	15	10.2251	1.7274	2.9838	0.9990	0.1689
10	0107	1	3	A2	TS03	0.5169	0.5536	0.0000	15	10.8724	2.4980	6.2399	0.9983	0.2298
10	0108	1	1	B5	BS05	0.5706	0.5549	-1.3240	15	8.9576	2.1710	4.7134	0.9983	0.2424
10	0108	1	3	A14	TS28	0.5804	0.4935	-2.2309	15	8.1387	2.0369	4.1491	0.9981	0.2503
10	0112	1	1	B11	BS11	0.5580	0.5114	-0.7176	15	8.8172	2.0666	4.2710	0.9987	0.2344
10	0112	1	2	B4	BS04	0.8166	0.2650	-0.9352	15	7.2230	3.1764	10.0897	0.9983	0.4398
		•	_		2007	5.5.00	J.=000	4.5002			0.1104		2.2000	J. 7000

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

State SHRP Code ID No. N	3 0.2004 0 0.1660 2 0.2762 3 0.2140 9 0.3292 4 0.1385 5 0.3226 4 0.2523 4 0.1423 3 0.3172 2 0.1953 4 0.1495 7 0.2304 7 0.2980 3 0.2218
10	3 0.2205 3 0.2004 0 0.1660 2 0.2762 3 0.2140 9 0.3292 4 0.1385 5 0.3226 4 0.2523 4 0.1423 3 0.3172 2 0.1953 4 0.1495 7 0.2304 7 0.2980 8 0.2218
10 0201 1 3 A17 TS33 0.5080 0.5210 0.0000 15 10.0048 2.0051 4.0205 0.98 10 0201 2 1 B6 BG06 0.4745 0.6041 -0.2803 15 9.9403 1.6500 2.7226 0.98 10 0202 1 1 B3 BG03 0.5146 0.6021 -0.3152 15 10.8641 3.0002 9.0010 0.98 10 0202 1 2 B9 BS03 0.5223 0.5351 -0.7636 15 8.5846 1.8367 3.3736 0.99 10 0204 1 3 A2 TS03 0.5974 0.4958 0.0000 15 11.5726 3.8093 14.5104 0.99 10 0204 2 2 B1 BG01 0.5278 0.6023 -0.5789 15 10.1254 1.4023 1.9663 0.98 10 0207 1	3 0.2004 0 0.1660 2 0.2762 3 0.2140 9 0.3292 4 0.1385 5 0.3226 4 0.2523 4 0.1423 3 0.3172 2 0.1953 4 0.1495 7 0.2304 7 0.2980 3 0.2218
10 0201 2 1 B6 BG06 0.4745 0.6041 -0.2803 15 9.9403 1.6500 2.7226 0.99 10 0202 1 1 B3 BG03 0.5146 0.6021 -0.3152 15 10.8641 3.0002 9.0010 0.99 10 0202 1 2 B9 BS03 0.5223 0.5351 -0.7636 15 8.5846 1.8367 3.3736 0.99 10 0204 1 3 A2 TS03 0.5974 0.4958 0.0000 15 11.5726 3.8093 14.5104 0.99 10 0204 2 2 B1 BG01 0.5278 0.6023 -0.5789 15 10.1254 1.4023 1.9663 0.99 10 0207 1 1 B10 BS04 0.7416 0.3477 -1.4035 15 8.0000 2.5807 6.6600 0.99 10 0207 2	0 0.1660 2 0.2762 3 0.2140 9 0.3292 4 0.1385 5 0.3226 4 0.2523 4 0.1423 3 0.3172 2 0.1953 4 0.1495 7 0.2304 7 0.2980 8 0.2218
10 0202 1 1 B3 BG03 0.5146 0.6021 -0.3152 15 10.8641 3.0002 9.0010 0.99 10 0202 1 2 B9 BS03 0.5223 0.5351 -0.7636 15 8.5846 1.8367 3.3736 0.99 10 0204 1 3 A2 TS03 0.5974 0.4958 0.0000 15 11.5726 3.8093 14.5104 0.99 10 0204 2 2 B1 BG01 0.5278 0.6023 -0.5789 15 10.1254 1.4023 1.9663 0.99 10 0207 1 1 B10 BS04 0.7416 0.3477 -1.4035 15 8.0000 2.5807 6.6600 0.99 10 0207 1 3 A11 TS21 0.5275 0.4735 0.0000 15 9.5334 2.4055 5.7863 0.99 10 0207 2	2 0.2762 3 0.2140 9 0.3292 4 0.1385 5 0.3226 4 0.2523 4 0.1423 3 0.3172 2 0.1953 4 0.1495 7 0.2304 7 0.2980 8 0.2218
10 0202 1 2 B9 BS03 0.5223 0.5351 -0.7636 15 8.5846 1.8367 3.3736 0.99 10 0204 1 3 A2 TS03 0.5974 0.4958 0.0000 15 11.5726 3.8093 14.5104 0.99 10 0204 2 2 B1 BG01 0.5278 0.6023 -0.5789 15 10.1254 1.4023 1.9663 0.99 10 0207 1 1 B10 BS04 0.7416 0.3477 -1.4035 15 8.0000 2.5807 6.6600 0.99 10 0207 1 3 A11 TS21 0.5275 0.4735 0.0000 15 9.5334 2.4055 5.7863 0.99 10 0207 2 2 B4 BG04 0.5149 0.5627 -0.4112 15 9.5877 1.3647 1.8625 0.98 10 0211 1	8 0.2140 9 0.3292 4 0.1385 5 0.3226 4 0.2523 4 0.1423 3 0.3172 2 0.1953 4 0.1495 7 0.2304 7 0.2980 8 0.2218
10 0204 1 3 A2 TS03 0.5974 0.4958 0.0000 15 11.5726 3.8093 14.5104 0.99 10 0204 2 2 B1 BG01 0.5278 0.6023 -0.5789 15 10.1254 1.4023 1.9663 0.99 10 0207 1 1 B10 BS04 0.7416 0.3477 -1.4035 15 8.0000 2.5807 6.6600 0.99 10 0207 1 3 A11 TS21 0.5275 0.4735 0.0000 15 9.5334 2.4055 5.7863 0.99 10 0207 2 2 B4 BG04 0.5149 0.5627 -0.4112 15 9.5877 1.3647 1.8625 0.99 10 0211 1 2 B11 BS05 0.6758 0.3955 -1.1849 15 8.0196 2.5438 6.4710 0.98 10 0212 1	9 0.3292 4 0.1385 5 0.3226 4 0.2523 4 0.1423 3 0.3172 2 0.1953 4 0.1495 7 0.2304 7 0.2980 8 0.2218
10 0204 2 2 B1 BG01 0.5278 0.6023 -0.5789 15 10.1254 1.4023 1.9663 0.998 10 0207 1 1 B10 BS04 0.7416 0.3477 -1.4035 15 8.0000 2.5807 6.6600 0.998 10 0207 1 3 A11 TS21 0.5275 0.4735 0.0000 15 9.5334 2.4055 5.7863 0.998 10 0207 2 2 B4 BG04 0.5149 0.5627 -0.4112 15 9.5877 1.3647 1.8625 0.998 10 0211 1 2 B11 BS05 0.6758 0.3955 -1.1849 15 8.0196 2.5438 6.4710 0.988 10 0211 1 3 A14 TS27 0.5715 0.4488 0.0000 15 9.6174 1.8783 3.5280 0.988 10 0212 1 <td>4 0.1385 5 0.3226 4 0.2523 4 0.1423 3 0.3172 2 0.1953 4 0.1495 7 0.2304 7 0.2980 8 0.2218</td>	4 0.1385 5 0.3226 4 0.2523 4 0.1423 3 0.3172 2 0.1953 4 0.1495 7 0.2304 7 0.2980 8 0.2218
10 0207 1 1 B10 BS04 0.7416 0.3477 -1.4035 15 8.0000 2.5807 6.6600 0.99 10 0207 1 3 A11 TS21 0.5275 0.4735 0.0000 15 9.5334 2.4055 5.7863 0.99 10 0207 2 2 B4 BG04 0.5149 0.5627 -0.4112 15 9.5877 1.3647 1.8625 0.99 10 0211 1 2 B11 BS05 0.6758 0.3955 -1.1849 15 8.0196 2.5438 6.4710 0.99 10 0211 1 3 A14 TS27 0.5715 0.4488 0.0000 15 9.6174 1.8783 3.5280 0.99 10 0212 1 1 B2 BG02 0.5013 0.5471 -0.3572 15 9.1963 1.3752 1.8911 0.99 10 0212 1	5 0.3226 4 0.2523 4 0.1423 3 0.3172 2 0.1953 4 0.1495 7 0.2304 7 0.2980 3 0.2218
10 0207 1 3 A11 TS21 0.5275 0.4735 0.0000 15 9.5334 2.4055 5.7863 0.99 10 0207 2 2 B4 BG04 0.5149 0.5627 -0.4112 15 9.5877 1.3647 1.8625 0.98 10 0211 1 2 B11 BS05 0.6758 0.3955 -1.1849 15 8.0196 2.5438 6.4710 0.98 10 0211 1 3 A14 TS27 0.5715 0.4488 0.0000 15 9.6174 1.8783 3.5280 0.98 10 0212 1 1 B2 BG02 0.5013 0.5471 -0.3572 15 9.1963 1.3752 1.8911 0.98 10 0212 1 2 B8 BS02 0.5802 0.5153 -0.8925 15 8.9857 2.0707 4.2878 0.98 10 1201 1	4 0.2523 4 0.1423 3 0.3172 2 0.1953 4 0.1495 7 0.2304 7 0.2980 3 0.2218
10 0207 2 2 B4 BG04 0.5149 0.5627 -0.4112 15 9.5877 1.3647 1.8625 0.98 10 0211 1 2 B11 BS05 0.6758 0.3955 -1.1849 15 8.0196 2.5438 6.4710 0.98 10 0211 1 3 A14 TS27 0.5715 0.4488 0.0000 15 9.6174 1.8783 3.5280 0.98 10 0212 1 1 B2 BG02 0.5013 0.5471 -0.3572 15 9.1963 1.3752 1.8911 0.98 10 0212 1 2 B8 BS02 0.5802 0.5153 -0.8925 15 8.9857 2.0707 4.2878 0.98 10 1201 1 1 BA** BS*** 0.9346 0.5452 -1.4123 14 14.1229 4.2089 17.7146 0.98 10 1201 1	4 0.1423 3 0.3172 2 0.1953 4 0.1495 7 0.2304 7 0.2980 8 0.2218
10 0211 1 2 B11 BS05 0.6758 0.3955 -1.1849 15 8.0196 2.5438 6.4710 0.98 10 0211 1 3 A14 TS27 0.5715 0.4488 0.0000 15 9.6174 1.8783 3.5280 0.99 10 0212 1 1 B2 BG02 0.5013 0.5471 -0.3572 15 9.1963 1.3752 1.8911 0.99 10 0212 1 2 B8 BS02 0.5802 0.5153 -0.8925 15 8.9857 2.0707 4.2878 0.99 10 1201 1 1 BA** BS*** 0.9346 0.5452 -1.4123 14 14.1229 4.2089 17.7146 0.98 10 1201 1 2 BA** BS*** 0.8074 0.5196 -0.7583 15 12.9585 2.8740 8.2597 0.99 10 1201 2 </td <td>3 0.3172 2 0.1953 4 0.1495 7 0.2304 7 0.2980 8 0.2218</td>	3 0.3172 2 0.1953 4 0.1495 7 0.2304 7 0.2980 8 0.2218
10 0211 1 3 A14 TS27 0.5715 0.4488 0.0000 15 9.6174 1.8783 3.5280 0.98 10 0212 1 1 B2 BG02 0.5013 0.5471 -0.3572 15 9.1963 1.3752 1.8911 0.99 10 0212 1 2 B8 BS02 0.5802 0.5153 -0.8925 15 8.9857 2.0707 4.2878 0.99 10 1201 1 1 BA** BS** 0.9346 0.5452 -1.4123 14 14.1229 4.2089 17.7146 0.99 10 1201 1 2 BA** BS** 0.8074 0.5196 -0.7583 15 12.9585 2.8740 8.2597 0.98 10 1201 2 1 BA1 BG03 0.6557 0.7192 -0.3295 14 50.8403 3.7755 14.2546 0.99 10 4002 2 </td <td>2 0.1953 4 0.1495 7 0.2304 7 0.2980 8 0.2218</td>	2 0.1953 4 0.1495 7 0.2304 7 0.2980 8 0.2218
10 0212 1 1 B2 BG02 0.5013 0.5471 -0.3572 15 9.1963 1.3752 1.8911 0.99 10 0212 1 2 B8 BS02 0.5802 0.5153 -0.8925 15 8.9857 2.0707 4.2878 0.99 10 1201 1 1 BA** BS** 0.9346 0.5452 -1.4123 14 14.1229 4.2089 17.7146 0.99 10 1201 1 2 BA** BS** 0.8074 0.5196 -0.7583 15 12.9585 2.8740 8.2597 0.99 10 1201 2 1 BA1 BG03 0.6557 0.7192 -0.3295 14 50.8403 3.7755 14.2546 0.99 10 4002 2 1 BA* BG** 0.6919 0.7114 -0.3183 15 55.1586 3.7721 14.2287 0.99 10 5004	0.1495 0.2304 0.2980 0.2218
10 0212 1 1 B2 BG02 0.5013 0.5471 -0.3572 15 9.1963 1.3752 1.8911 0.99 10 0212 1 2 B8 BS02 0.5802 0.5153 -0.8925 15 8.9857 2.0707 4.2878 0.99 10 1201 1 1 BA** BS** 0.9346 0.5452 -1.4123 14 14.1229 4.2089 17.7146 0.99 10 1201 1 2 BA** BS** 0.8074 0.5196 -0.7583 15 12.9585 2.8740 8.2597 0.99 10 1201 2 1 BA1 BG03 0.6557 0.7192 -0.3295 14 50.8403 3.7755 14.2546 0.98 10 4002 2 1 BA* BG** 0.8164 0.6761 -0.3259 15 55.3411 6.6851 44.6902 0.99 10 4002	0.1495 0.2304 0.2980 0.2218
10 0212 1 2 B8 BS02 0.5802 0.5153 -0.8925 15 8.9857 2.0707 4.2878 0.99 10 1201 1 1 BA** BS** 0.9346 0.5452 -1.4123 14 14.1229 4.2089 17.7146 0.99 10 1201 1 2 BA** BS** 0.8074 0.5196 -0.7583 15 12.9585 2.8740 8.2597 0.99 10 1201 2 1 BA1 BG03 0.6557 0.7192 -0.3295 14 50.8403 3.7755 14.2546 0.98 10 4002 2 1 BA* BG** 0.8164 0.6761 -0.3259 15 55.3411 6.6851 44.6902 0.99 10 4002 2 2 BA* BG** 0.6919 0.7114 -0.3183 15 52.1586 3.7721 14.2287 0.99 10 5004 <	7 0.2304 7 0.2980 8 0.2218
10 1201 1 1 BA** BS** 0.9346 0.5452 -1.4123 14 14.1229 4.2089 17.7146 0.99 10 1201 1 2 BA** BS** 0.8074 0.5196 -0.7583 15 12.9585 2.8740 8.2597 0.99 10 1201 2 1 BA1 BG03 0.6557 0.7192 -0.3295 14 50.8403 3.7755 14.2546 0.99 10 4002 2 1 BA* BG** 0.8164 0.6761 -0.3259 15 55.3411 6.6851 44.6902 0.99 10 4002 2 2 BA* BG** 0.6919 0.7114 -0.3183 15 52.1586 3.7721 14.2287 0.99 10 5004 2 1 BA2 BG02 0.6689 0.7362 -0.1552 14 58.6943 3.1649 10.0163 0.99	7 0.2980 8 0.2218
10 1201 1 2 BA** BS** 0.8074 0.5196 -0.7583 15 12.9585 2.8740 8.2597 0.99 10 1201 2 1 BA1 BG03 0.6557 0.7192 -0.3295 14 50.8403 3.7755 14.2546 0.99 10 4002 2 1 BA* BG** 0.8164 0.6761 -0.3259 15 55.3411 6.6851 44.6902 0.99 10 4002 2 2 BA* BG** 0.6919 0.7114 -0.3183 15 52.1586 3.7721 14.2287 0.99 10 5004 2 1 BA2 BG02 0.6689 0.7362 -0.1552 14 58.6943 3.1649 10.0163 0.99	0.2218
10 1201 2 1 BA1 BG03 0.6557 0.7192 -0.3295 14 50.8403 3.7755 14.2546 0.99 10 4002 2 1 BA* BG** 0.8164 0.6761 -0.3259 15 55.3411 6.6851 44.6902 0.99 10 4002 2 2 BA* BG** 0.6919 0.7114 -0.3183 15 52.1586 3.7721 14.2287 0.99 10 5004 2 1 BA2 BG02 0.6689 0.7362 -0.1552 14 58.6943 3.1649 10.0163 0.99	+
10 4002 2 1 BA* BG** 0.8164 0.6761 -0.3259 15 55.3411 6.6851 44.6902 0.99 10 4002 2 2 BA* BG** 0.6919 0.7114 -0.3183 15 52.1586 3.7721 14.2287 0.99 10 5004 2 1 BA2 BG02 0.6689 0.7362 -0.1552 14 58.6943 3.1649 10.0163 0.99	J 0.0743
10 4002 2 2 BA* BG** 0.6919 0.7114 -0.3183 15 52.1586 3.7721 14.2287 0.99 10 5004 2 1 BA2 BG02 0.6689 0.7362 -0.1552 14 58.6943 3.1649 10.0163 0.99	0.4000
10 5004 2 1 BA2 BG02 0.6689 0.7362 -0.1552 14 58.6943 3.1649 10.0163 0.99	
	+
1 40 5004 0 0 841 8011 0 7000 0 0000 44 88 1800 8600 1400	
10 5004 2 2 BA* BG** 0.7930 0.6578 -0.2301 14 55.4522 5.1026 26.0365 0.99	
10 5005 1 1 BA1 BS01 0.7943 0.6288 -1.1734 15 14.2839 2.7062 7.3232 0.99	
10 5005 1 2 BA6 BS06 0.6353 0.5872 0.0000 15 15.0943 5.9591 35.5111 0.99	
10 5005 2 1 BA* BG** 0.7074 0.7208 -0.2847 15 55.6949 4.2563 18.1164 0.99	0.0764
12 0101 1 1 B5 BS05 0.5973 0.5024 0.0000 15 11.2088 1.6014 2.5645 0.99	0.1429
12 0104 1 2 B4 BS04 0.6657 0.4732 0.0000 15 11.9236 2.6877 7.2239 0.99	0.2254
12 0106 1 2 B2 BS02 0.6817 0.4674 -0.2324 15 11.4547 3.4737 12.0663 0.99	0.3033
12 0107 1 2 B1 BS01 0.6119 0.6186 -0.1422 15 13.6845 2.0042 4.0167 0.99	0.1465
12 0112 1 2 B3 BS03 0.6652 0.5724 -0.2718 15 13.2259 1.9549 3.8217 0.99	0.1478
12 1030 1 1 A1 TS01 0.7635 0.8401 -1.0871 15 20.2395 7.2234 52.1774 0.99	0.3569
12 1030 1 2 TP1 BS55 1.0741 0.5049 0.0000 15 20.5735 3.9253 15.4082 0.99	0.1908
12 1030 2 1 BA* BG** 1.1649 0.5985 -0.2235 15 69.8153 3.9118 15.3021 0.99	0.0560
12 1030 2 2 TP1 BG56 1.0276 0.5576 0.0000 15 66.2582 6.3145 39.8731 0.99	
12 1030 3 1 BA* BG** 0.7311 0.7292 -0.0214 15 71.7623 12.6045 158.8739 0.99	
12 1030 3 2 TP1 BG55 0.9320 0.6805 0.0000 15 82.1426 10.4899 110.0383 0.99	
12 1370 2 1 BA* BG** 0.7739 0.7513 -0.2882 15 68.6942 11.3641 129.1437 0.99	+
12 1370 2 2 TP1 BG56 0.7039 0.6223 0.0000 15 53.6308 5.1446 26.4664 0.99	
12 1370 3 2 TP1 BG55 0.9465 0.7224 -0.1113 15 86.1236 6.7845 46.0291 0.99	+
12 3804 1 1 A1 TS01 0.9970 0.6862 -1.3881 15 17.4432 3.6151 13.0690 0.99	
	
	_
12 3811 2 1 BA* BG** 0.8395 0.6029 -0.2223 15 51.1611 3.7397 13.9853 0.99	-
12 3811 2 2 BA* BG** 0.5468 0.6922 0.0000 15 49.2982 6.4105 41.0949 0.99	
12 3995 1 1 A1 TS01 0.6758 0.6123 -0.3224 15 14.8891 3.4067 11.6056 0.99	1
12 3995 1 2 TP1 BS55 0.8587 0.4460 0.0000 15 14.8411 4.6674 21.7851 0.99	
12 3995 2 2 TP1 BG56 0.8732 0.5308 0.0000 15 51.7569 3.2508 10.5679 0.99	+
12 3995 3 1 BA* BG** 0.5862 0.7820 0.0000 15 66.3438 22.8761 523.3177 0.98	
12 3995 3 2 TP1 BG55 1.0498 0.6834 0.0000 15 93.5001 14.8367 220.1285 0.99	
12 3996 1 1 BA* BS** 1.1853 0.5631 -0.3406 15 22.7466 3.7254 13.8786 0.99	
12 3996 1 2 A2 TS03 0.7946 0.6264 -0.6460 15 16.2255 3.5180 12.3766 0.99	+
12 3996 2 1 BA* BG** 1.2738 0.5697 -0.2774 15 66.8735 7.1835 51.6032 0.99	0.1074
12 3996 2 2 TP1 BG56 1.1808 0.6139 -0.1975 15 75.3561 5.1741 26.7718 0.99	0.0687
12 3996 3 2 TP1 BG55 1.2266 0.5697 -0.2059 15 68.3164 10.4957 110.1605 0.99	0.1536
12 3997 1 1 BA* BS** 0.9690 0.4790 -0.2001 15 16.4152 3.3933 11.5143 0.99	0.2067
12 3997 1 2 A2 TS02 0.5257 0.7256 -1.0220 15 11.7866 1.6129 2.6014 0.99	0.1368

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

Contracts the same and

Chada	CHDD	Lavar	T	1.00	Comple				No	014				
State Code	SHRP	Layer No.	Test No.	Loc. No.	Sample No.	k1	k2	k3	No. Points	Std Dev(M _R)	RMSE	MSE	R²	s./s,
12	3997	2	1	BA*	BG**	0.6290	0.8039	-0.3322	15	58.9405	4.6904	21.9994	0.9990	0.0796
12	3997	2	2	TP1	BG56	0.6511	0.7805	-0.2947	15	59.1027	4.8368	23.3942	0.9990	0.0818
12	3997	3	1	BA*	BG**	0.9810	0.6149	0.0000	15	87.3458	56.1647	3154.4790	0.9313	0.6430
12	3997	3	2	TP1	BG55	1.8166	0.6821	-0.3972	15	119.9431	11.8271	139.8806	0.9989	0.0986
12	4000	1	1	A1	TS01	0.7079	0.1281	0.0000	15	13.2043	12.7528	162.6327	0.9723	0.9658
12	4000	1	2	A2	TS04	0.6955	0.5877	-0.3577	15	14.1808	2.9421	8.6558	0.9985	0.2075
12	4057	1	1	A1	TS01	1.0015	0.6071	-0.2501	15	22.2544	7.1691	51.3967	0.9959	0.3221
12	4057	1	2	A2	TS03	1.1368	0.7373	-0.6570	15	28.9109	8.2250	67.6514	0.9956	0.2845
12	4057	2	1	BA*	BG**	1.1329	0.5996	-0.1200	15	73.9796	3.5863	12.8614	0.9998	0.0485
12	4057	2	2	BA*	BG**	1.1356	0.5978	-0.1918	15	70.0804	5.2201	27.2492	0.9994	0.0745
12	4059	1	1	A1	TS01	0.7213	0.5814	0.0000	15	17.4465	7.2319	52.3008	0.9926	0.4145
12	4059	1	2	BA*	BS**	0.8018	0.3872	-0.3412	15	11.6937	6.1376	37.6695	0.9948	0.5249
12	4059	2	1	BA*	BG**	1.6715	0.5319	-0.4455	15	68.3669	12.1150	146.7725	0.9979	0.1772
12	4059	2	2	BA*	BG**	1.5439	0.5875	-0.3898	15	77.7682	7.6240	58.1253	0.9992	0.0980
12	4096	1	1	A1	TS01	0.5874	0.6335	0.0000	15	14.8558	4.6186	21.3318	0.9956	0.3109
12	4096	1	2	A2	TS03	0.6756 0.8613	0.8444	-0.6089	15	19.4696	4.5569	20.7655	0.9964	0.2341
12	4096 4096	2	2	BA*	BG** BG55	0.8613	0.5729 0.7227	-0.1239 -0.1420	15 15	52.0244 51.8209	3.7153 1.8257	13.8037 3.3332	0.9995	0.0714
12	4096	1	1		TS01	0.8105	0.7227		15	11.8615	3.5622	12.6895	0.9982	0.0352
12	4097	1	2	A1 A2	TS03	1.1159	0.4330	-0.4685 -1.1770	15	16.3963	4.1717	17.4031	0.9984	0.3003
12	4099	1	1	BA*	BS**	0.9644	0.5428	0.0000	15	20.0649	4.5685	20.8710	0.9983	0.2344
12	4099	1	2	TP1	BS55	1.0681	0.5000	0.0000	13	21.3952	3.1893	10.1714	0.9993	0.1491
12	4099	2	1	BA*	BG**	0.9989	0.6266	-0.1209	15	69.0869	3.5593	12.6688	0.9997	0.0515
12	4099	2	2	TP1	BG56	1.0873	0.5745	-0.0372	15	71.0889	3.6850	13.5794	0.9997	0.0518
12	4099	3	1	BA*	BG**	1.0777	0.5905	-0.1316	15	67.4197	7.5809	57.4708	0.9987	0.1124
12	4100	1	1	A1	TS01	0.5159	0.5230	0.0000	15	10.5456	3.3422	11.1702	0.9968	0.3169
12	4100	1	2	A2	TS03	0.5491	0.5933	0.0000	15	12.4663	2.5676	6.5927	0.9984	0.2060
12	4100	2	1	BA*	BG**	0.8429	0.6516	-0.3325	15	53.9442	4.1538	17.2545	0.9994	0.0770
12	4100	2	2	TP1	BG55	0.8432	0.5865	-0.0964	15	53.9411	2.6795	7.1797	0.9997	0.0497
12	4101	1	. 1	A1	TS01	0.4948	0.6069	-0.6083	15	9.7897	1.1690	1.3665	0.9995	0.1194
12	4101	1	2	A2	TS03	0.5166	0.5130	-0.4348	15	9.1641	3.1218	9.7458	0.9968	0.3407
12	4101	2	1	BA*	BG**	1.0272	0.6928	-0.3993	15	69.2829	6.7941	46.1596	0.9989	0.0981
12	4101	2	2	TP1	BG56	0.7937	0.7175	-0.2933	15	62.0190	3.8732	15.0015	0.9995	0.0625
12	4101	3	1	BA*	BG**	1.4702	0.4829	-0.2496	15	60.6487	9.7178	94.4349	0.9984	0.1602
12	4101	3	2	TP1	BG55	1.0903	0.5542	-0.0534	15	66.7345	9.8639	97.2973	0.9979	0.1478
12	4102	1	1	A1	TS02	0.5231	0.4857	0.0000	15	13.8822	10.2642	105.3530	0.9713	0.7394
12	4102	1	2	A2	TS03	0.4947	0.7199	-0.6812	15	11.7526	2.8602	8.1807	0.9971	0.2434
12	4102	2	1	BA*	BG**	0.9817	0.6666	-0.1654	15	73.8272	3.6918	13.6293	0.9997	0.0500
12	4102	2	2	TP1	BG56	0.9340	0.6579	-0.1694	15	69.4508	6.6583	44.3335	0.9989	0.0959
12	4102	3	1	BA*	BG**	1.0586	0.6259	-0.1294	15	73.0574	8.9601	80.2832	0.9983	0.1226
12	4102	3	2	TP1	BG55	1.0933	0.5949	0.0000	15	77.8220	11.9144	141.9525	0.9974	0.1531
12	4103	1	1 2	BA*	BS**	0.6491				33.0970	29.0194			
12	4103	1	1	TP1	BS55 BG**	0.8813		-0.3588	14	18.7143 107.1725	2.0665	4.2704	0.9996 0.9981	0.1104
12	4103 4103	2	2	BA*	BG**	1.3077 1.3077	0.6478 0.6478	0.0000	15 15	107.1725	12.7980 12.7980		0.9981	0.1194 0.1194
12	4103	2	2	TP1	BG56	1.4307	0.5687	-0.2639	15	75.8032	16.7789		0.9958	0.1194
12	4103	3	1	BA*	BG**	0.2985	1.0083	0.0000	15	55.7031	7.1588		0.9960	0.1285
12	4103	3	2	TP1	BG55	0.3982	1.0622	0.0000	15	84.1613	5.0229	25.2297	0.9991	0.0597
12	4105	1	1	BA*	BS**	0.9902	0.5251	-0.3831	15	17.5494	3.3652	11.3245	0.9990	0.1918
12	4105	1	2	BA*	BS**	0.8644	0.6456	-0.3097	15	19.2942	2.9455	8.6757	0.9991	0.1527
12	4105	2	1	BA*	BG**	0.9147	0.6413	-0.1892	15	63.5754	2.7306	7.4561	0.9998	0.0430
12	4105	2	2	BA*	BG**	0.9363	0.5835	-0.1520	15	57.1025	3.0922	9.5615	0.9997	0.0542
12	4105	3	1	BA*	BG**	1.1295	0.6654	-0.2417	15	79.3272	10.5297	110.8754	0.9980	0.1327
12	4105	3	2	BA*	BG**	1.2034	0.5859	0.0000	15	83.1151	16.2179	263.0190	0.9958	0.1951
12	4106	1	1	A1	TS01	0.7348	0.7280	-0.4088	15	18.9957	4.8558	23.5786	0.9965	0.2556
12	4106	1	2	A2	TS03	0.8087	0.6480	-0.2570	15	18.8068	4.1161	16.9422	0.9980	0.2189

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

			Γ				·		T					
State	SHRP	Layer	Test	Loc.	Sample	1.4		1.0	No.	Std	DMCE	MOE	R²	
Code	ID	No.	No.	No.	No.	k1	k2	k3	Points	Dev(M _R)	RMSE	MSE		S _e /S _y
12	4106	2	1	BA*	BG**	0.7192	0.8682	0.0000	15	108.7992	58.5846	3432.1540	0.9310	0.5385
12	4106	2	2	TP1	BG56	0.9003	0.6710	-0.2002	15	66.7200	3.0393	9.2374	0.9997	0.0456
12	4106	3	1	BA*	BG**	1.1197	0.5430	0.0000	15	95.5868	69.3999	4816.3440	0.9070	0.7260
12	4106	3	2	TP1	BG55	1.1762	0.7253	-0.1736	15	102.0559	6.7128	45.0612	0.9994	0.0658
12	4107	1	1	A1	TS01	0.6872	0.5268	0.0000	15	14.7283	5.9662	35.5950	0.9943	0.4051
12	4107	2	1	BA*	BG**	1.1597	0.7404	-0.1617	15	106.3249	9.6466	93.0578	0.9988	0.0907
12	4108	2	1	BA*	BG**	0.8199	0.6055	-0.0285	15	58.4847	2.6824	7.1953	0.9998	0.0459
12	4108	2	2	TP1	BG55	0.8789	0.6536	-0.3168	15	56.9647	3.7440	14.0179	0.9995	0.0657
12	4136	1	2	TP1	BS55	0.8085	0.4982	0.0000	15	15.1585	1.1706	1.3704	0.9998	0.0772
12	4153	2	1	BA*	BG**	1.2416	0.7259	-0.2695	15	100.7053	8.0287	64.4608	0.9992	0.0797
12	4153	2	2	TP1	BG55	1.2721	0.6403	-0.2794	15	82.4839	6.7410	45.4406	0.9993	0.0817
12	4154	2	1	BA*	BG**	1.1643	0.4996	0.0000	15	62.6633	9.4596	89.4846	0.9981	0.1510
12	4154	2	2	TP1	BG55	1.1360	0.4973	-0.0894	15	56.3619	7.5011	56.2666	0.9986	0.1331
12	9054	3	2	TP1	BG55	0.5994	1.0198	-0.1789	15	102.6889	8.1423	66.2965	0.9985	0.0793
13	0507	1	1	BA*	BS**	0.9499	0.3930	-1.8450	15	11.4068	3.0205	9.1235	0.9985	0.2648
13	0507	2	1	BA*	BG**	1.0362	0.6794	-0.2521	14	77.5624	5.6562	31.9925	0.9993	0.2548
13	0509	2	2	BA*	BG**	1.0046	0.6334	-0.1394	15	70.8226	3.8759	15.0225	0.9997	0.0547
13	1001	2	1	BA*	BG**	0.6046	0.8342	-0.1435	15	69.6931	2.4606	6.0544	0.9998	0.0353
13	1001	2	2	TP1	BG55	0.8146	0.7086	-0.1135	15	70.9952	3.9226	15.3864	0.9996	0.0553
13	1004	2	1	BA*	BG**	0.8050	0.8342	-0.3270	15	80.9104	6.9782	48.6952	0.9988	0.0862
13	1004	2	2	TP1	BG55	0.7927	0.5838	-0.0444	15	52.7293	3.6009	12.9665	0.9995	0.0683
13	1005	2	2	TP1	BG55	0.9928	0.5953	-0.2068	15	59.5105	5.7688	33.2787	0.9991	0.0969
13	1031	2	1	BA*	BG**	0.8214	0.5996	-0.4204	15	42.0999	8.9091	79.3714	0.9962	0.2116
13	1031	2	2	TP1	BG55	0.3498	1.0213	-0.6299	15	43.9569	4.9407	24.4102	0.9976	0.1124
13	3007	2	1	BA*	BG**	0.9088	0.7512	-0.0006	15	94.9349	9.6074	92.3022	0.9984	0.1012
13	3007	2	. 2	TP1	BG55	0.9234	0.7572	0.0000	15	99.2485	3.7725	14.2316	0.9998	0.0380
13	3016	2	1	ВАЗ	BG03	0.9990	0.6250	-0.0824	15	72.5807	7.0308	49.4323	0.9989	0.0969
13	3016	2	2	BA*	BG**	0.6669	0.7000	-0.0929	15	57.7468	5.5427	30.7210	0.9987	0.0960
13	3019	2	1	BA*	BG**	0.4957	0.6388	0.0000	15	40.1800	4.8493	23.5156	0.9981	0.1207
13	3019	2	2	BA*	BG**	0.6419	0.6839	-0.0113	15	57,4828	4.1381	17.1239	0.9993	0.0720
13	4111	2	1	BA*	BG**	0.4531	0.9688	-0.3873	15	60.2849	7.0552	49.7762	0.9973	0.1170
13	4111	2	2	TP1	BG55	1.2044	0.5349	-0.1181	15	65.0076	10.4045	108.2534	0.9978	0.1601
13	4119	2	1	BA*	BG**	0.6039	0.6786	-0.0545	15	51.9033	4.9568	24.5703	0.9987	0.0955
13	4119	2	2	BA*	BG**	1.0735	0.6537	-0.1402	15	79.4028	5.7009	32.4999		
15	1003	1	1	BA*	BS**								0.9994	0.0718
			$\overline{}$			1.1801	0.2744	0.0000	15	14.2170	7.7635	60.2712	0.9964	0.5461
15	1003	1	2	TP1	BS93	0.8037	0.2713	-1.9778	15	8.4386	1.6830	2.8324	0.9993	0.1994
15	1006	1	2	TP1	BS93	0.8282	0.2533	-1.5392	15	7.6364	2.0750	4.3055	0.9991	0.2717
16	1005	1	1	BA*	BS**	0.8133	0.1709	-0.8203	15	5.0351	1.8550	3.4410	0.9994	0.3684
16	1005	1	2	TP1	BS92	0.5412	0.4771	-1.4878	15	7.4495	2.3277	5.4183	0.9977	0.3125
16	1005	2	1	BA*	BG**	0.4444	0.6073	-0.0347	15	31.3161	3.0125	9.0752	0.9990	0.0962
16	1009	1	1	BA*	BS**	0.6956	0.3369	-1.2859	15	7.1661	2.1588	4.6603	0.9988	0.3013
16	1009	1	2	TP1	BS92	0.5343	0.5533	-2.0868	15	8.0575	2.0946	4.3874	0.9978	0.2600
16	1010	1	1	BA*	BS**	0.4761	0.7369	-0.7215	15	10.9948	1.4424	2.0805	0.9992	0.1312
16	1010	11	2	TP1	BS92	0.4972	0.6362	-0.8064	15	9.7003	1.8796	3.5330	0.9987	0.1938
16	1020	1	1	BA*	BS**	0.6778	0.2134	-0.4236	15	4.8472	2.0117	4.0467	0.9991	0.4150
16	1020	1	2	TP1	BS93	0.5297	0.5317	-2.4055	15	7.8619	2.0733	4.2987	0.9975	0.2637
16	3017	1	1	BA*	BS**	0.6379	0.4009	-1.4634	15	7.6108	2.4823	6.1619	0.9981	0.3262
16	3017	1	2	BA*	BS**	0.5082	0.5484	-1.0714	15	8.1807	2.2643	5.1271	0.9979	0.2768
16	3023	1	1	BA*	BS**	0.6797	0.2082	-1.0948	15	5.0972	1.7088	2.9202	0.9992	0.3353
16	3023	1	2	BA*	BS**	0.5490	0.5495	-1.2113	15	8.6421	2.2628	5.1203	0.9981	0.2618
16	3023	2	1	BA*	BG**	0.8836	0.2666	-0.1515	15	16.9276	3.1961	10.2148	0.9992	0.1888
16	5025	1	2	BA*	BS**	0.8766	0.2593	-0.9251	15	7.1760	2.3484	5.5150	0.9992	0.3273
16	6027	1	2	TP1	BS93	1.4416	0.2028	0.0000	15	16.3454	12.3673	152.9498	0.9937	0.7566
16	9032	1	2	TP1	BS92	0.4390	0.1143	-4.2765	15	7.0326	2.1370	4.5666	0.9933	0.3039
16	9034	1	2	TP1	BS91	0.5695	0.7125	-1.7816	15	10.8869	2.3033	5.3054	0.9980	0.2116
17	1002	1	1	A1	TS01	1.3479	0.2225	-1.7115	15	12.2467	1.5635	2.4446	0.9998	0.1277

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

<u> </u>	[aa.	T							NI.		-			
State Code	SHRP	Layer No.	Test No.	Loc. No.	Sample No.	k1	k2	k3	No. Points	Std Dev(M _R)	RMSE	MSE	R²	S _e /S _v
17	1002	1	2	TP*	BS**	0.7694	0.7533	-4.0159	15	14.2552	3.3959	11.5320	0.9956	0.2382
17	1002	1	1	BA*	BS**	0.7894	0.7533	-1.6956	15	8.4724	0.9582	0.9182	0.9998	0.1131
17	1003	1	2	TP*	BS**	0.8388	0.7253	-4.3621	15	6.2427	2.3750	5.6405	0.9872	0.3804
17	4074	1	1	BA*	BS**	0.6099	0.7255	-0.5543	15	4.4508	1.7885	3.1987	0.9991	0.4018
17	4074	1	2	BA*	BS**	1.6972	0.2268	-0.8437	15	17.5860	1.9087	3.6430	0.9999	0.1085
17	4082	<u></u>	1	A1	TS01	0.9277	0.0669	-1.7470	15	8.4504	0.8743	0.7644	0.9999	0.1035
	4082	1	2		TS03	0.8998	0.2462	-3.5207	15	12.6540	1.6305	2.6587	0.9992	0.1039
17	5020		1	A2	TS01	0.4670		-3.8974	15	6.9946	0.9860	0.9722	0.9988	0.1410
17		1	2	A1		1,1749	0.1470	-3.6974	15	14.3371			0.9998	0.0880
17	5020	1	1	A2 BA*	TS03 BS**	0.6819	0.2575		15	16.5946	1.2611	1.5903 6.4344	0.9988	0.0550
17	5151	1					0.7680	-0.7372 -1.1850			2.5366 2.3824		0.9990	0.1529
17	5151	1	2	BA*	BS**	0.7360	0.7417		15	15.6336 9.2644		5.6759	0.9994	0.1324
17	5217	1	1	A1	TS01	0.6774	0.1698	-3.3220	15		1.1282	1.2728		
17	5217	2	1	BA*	BG**	0.8709	0.6651	-0.0736	15	69.5484	3.1945	10.2050	0.9997	0.0459
17	5217	2	2	BA*	BG**	0.7451	0.6239	0.0000	15	56.5062	4.3643	19.0473	0.9993	0.0772
17	5423	1	1	A1	T\$01	1.0361	0.1443	-1.6573	15	8.9427	1.3387	1.7921	0.9998	0.1497
17	5423	1	2	A2	TS03	1.4215	0.3107	-1.6122	15	14.0604	1.9613	3.8465	0.9997	0.1395
17	5453	1	1	A1	TS01	0.8921	0.3810	-4.5791	15	14.6102	3.1721	10.0621	0.9963	0.2171
17	5453	1	2	A2	TS03	1.2888	0.1400	-2.6957	15	15.7843	1.1936	1.4247	0.9998	0.0756
17	5843	1	1	A1	TS01	0.9798	0.1512	-1.9692	15	9.4602	1.0294	1.0596	0.9998	0.1088
17	5843	1	2	A2	TS03	1.3123	0,1087	-1.4823	15	10.4129	1.3978	1.9538	0.9998	0.1342
17	5849	1	1	BA*	BS**	1.5837	0.3030	-1.2764	15	14.5645	2.2465	5.0468	0.9997	0.1542
17	5849	1	2	TP*	BS**	1.3882	0.3634	-2.2505	15	16.5394	3.1663	10.0255	0.9992	0.1914
17	5854	1	1	BA*	BS**	0.2378	0.0231	-2.0798	15	3.3094	2.2278	4.9629	0.9856	0.6732
17	5854	1	2	A2	TS03	1.1069	0.1574	-2.2795	15	11.9754	1.0224	1.0453	0.9999	0.0854
17	5869	1	1	BA*	BS**	0.9555	0.5101	-2.8228	14	14.1501	3.1949	10.2077	0.9979	0.2258
17	5908	1	1	BA*	BS**	1.2271	0.3164	-1.8914	15	12.7384	0.9803	0.9609	0.9999	0.0770
17	5908	1	2	A2	TS03	1.1184	0.2961	-3.5981	15	16.0926	1.8435	3.3986	0.9994	0.1146
17	6050	1	1	BA*	BS**	0.5312	0.4764	-5.0924	15	8.9320	1.4586	2.1276	0.9975	0.1633
17	6050	1	2	TP1	B\$**	1.3150	0.2621	-0.9935	14	9.3291	1.0072	1.0144	0.9999	0.1080
17	6050	2	1	BA*	BG**	0.8542	0.6403	0.0000	15	67.3355	6.1253	37.5189	0.9990	0.0910
17	6050	2	2	TP*	BG**	1.0270	0.5903	0.0000	15	71.1082	5.7426	32.9779	0.9993	0.0808
17	6050	3	1	BA*	BG**	1.0193	0.7123	-0.0121	15	96.3697	5.9577	35.4946	0.9994	0.0618
17	6050	3	- 2	TP*	BG**	1.2085	0.5660	0.0000	14	74.4341	6.2652	39.2524	0.9994	0.0842
17	7937	1	1	BA*	BS**	0.7524	0.3875	-2.9406	15	10.3680	2.7066	7.3259	0.9975	0.2611
17	7937	1	2	A2	TS03	0.4952	0.4619	-4.4102	15	8.3478	2.7544	7.5866	0.9914	0.3300
17	7937	2	1	BA*	BG**	0.6658	0.5978	-0.0450	15	45.4803	8.8611	78.5189	0.9959	0.1948
17	7937	2	2	TP*	BG**	0.5436	0.7482	-0.0841	15	52.4847	8.8776	78.8126	0.9957	0.1691
17	9267	1	2	BA*	BS**	0.6401	0.6992	-0.5095	15	14.7535	1.3112	1.7193	0.9997	0.0889
17	9327	1	1	A2	TS03	0.7987	0.2157	-3.6060	15	11.3381	0.8968	0.8042	0.9997	0.0791
17	9327	1	1	BA*	BS**	0.3284	0.2792	-3.6669	14	5.5589	3.1555	9.9571	0.9787	0.5676
17	9327	2	1	BA*	BG**	0.9241	0.5903	0.0000	15	64.0460	2.9739	8.8442	0.9998	0.0464
17	9327	2	2	TP*	BG**	0.8682	0.5603	-0.0696	15	52.2651	7.1054	50.4874	0.9982	0.1360
18	1028	1	1	A1	TS01	1.0185	0.2041	-3.9905	15	15.4858	3.0842	9.5120	0.9976	0.1992
18	1028	1	2	A2	TS03	1.4511	0.2260	-0.8881	15	10.0773	1.0247	1.0499	0.9999	0.1017
18	1037	1	.1	BA*	BS**	0.2130	0.4021	0.0000	15	4.3622	3.0453	9.2739	0.9839	0.6981
18	1037	1	2	TP*	BS**	0.3652	0.3284	-2.6868	15	5.9362	4.0843	16.6813	0.9775	0.6880
18	2008	1	2	A2	TS03	2.2960	0.3122	-2.1867	14	21.8729	2.7116	7.3526	0.9998	0.1240
18	2009	2	1	BA1	BG01	1.3611	0.4370	-0.5682	14	37.4322	13.9977	195.9342	0.9941	0.3739
18	2009	2	2	TP*	BG**	2.3228	0.3086	-1.1605	13	36.0690	22.8971	524.2750	0.9892	0.6348
18	3002	1	1	A1	TS01	1.2879	0.3377	-1.7600	15	13.6057	1.6677	2.7812	0.9998	0.1226
18	3002	1	2	A2	TS03	0.9382	0.2318	-2.0386	15	9.5444	1.0347	1.0707	0.9998	0.1084
18	3002	2	1	BA*	BG**	0.9557	0.6382	0.0000	14	69.4903	3.1152	9.7045	0.9998	0.0448
18	3002	2	2	TP*	BG**	1.0218	0.6626	-0.0370	14	76.4659	4.3353	18.7947	0.9996	0.0567 0.5508
18	3003	1	1	BA*	BS**	0.3717	0.7565	-1.5394	15	8.9240	4.9152 2.2433	24.1593 5.0324	0.9807 0.9983	0.5508
18	3003	1	2	TP*	BS**	0.4990	0.8898	-0.9009	15	14.0401				
18	3030	1	1	A1	TS01	1.9430	0.3907	-1.6994	15	22.5046	5.3663	28.7969	0.9990	0.2385

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

<u> </u>		Ι.	[]											
State	SHRP	Layer No.	Test No.	Loc. No.	Sample No.	k1	k2	k3	No. Points	Std Dev(M _R)	RMSE	MSE	R²	S _a /S _v
18	3030	1	2	TP*	BS**	1.1469	0.3549	-4.5930	15	18.2983	2.5840	6.6769	0.9985	0.1412
18	3031	 	1	A1	TS01	1.3715	0.1639	-1.9271	15	13.1501	1.3828	1.9121	0.9998	0.1052
18	3031	1	2	A2	TS03	0.8333	0.2519	-4.4471	15	13.0738	1.6140	2.6049	0.9989	0.1235
18	4021	1	1	A1	TS01	1.0102	0.5087	-5.5454	15	17.6751	4.9346	24.3500	0.9914	0.2792
18	4021	1	2	TP*	BS**	1.3495	0.3534	-4.1962	15	20.7422	2.4830	6.1655	0.9991	0.1197
18	4042	1	1	BA*	BS**	1.2089	0.3601	-1.8826	15	13.8914	2.8705	8.2395	0.9992	0.2066
18	4042	1	2	BA⁺	BS**	0.6107	0.6534	-1.3516	15	11.2059	2.3325	5.4403	0.9984	0.2081
18	5022	1	1	BA*	BS**	0.7935	0.6230	-2.7372	13	11.2278	2.9441	8.6679	0.9974	0.2622
18	5022	1	2	A2	TS04	1.5391	0.2834	-1.3788	15	13.8058	1.8257	3.3333	0.9998	0.1322
18	5043	1	1	BA*	BS**	1.1261	0.2032	-2.3606	15	12.4491	1.2976	1.6838	0.9998	0.1042
18	5043	1	2	BA*	BS**	0.8842	0.3176	-4.2421	15	13.7885	2.8014	7.8476	0.9972	0.2032
18	5043	2	1	BA⁺	BG**	0.6851	0.7196	-0.2192	15	56.5018	3.3685	11.3468	0.9995	0.0596
18	5043	2	2	BA*	BG**	0.5903	0.7128	-0.1781	15	49.1084	5.7173	32.6873	0.9982	0.1164
18	5518	1	1	BA*	BS**	0.6409	0.7795	-0.9907	15	15.1877	3.1805	10.1157	0.9977	0.2094
18	5518	1	2	BA*	BS**	0.5421	0.8955	-2.2834	15	12.2338	1.6973	2.8807	0.9987	0.1387
18	5518	2	1	BA*	BG**	0.8349	0.6897	-0.1683	14	61.7587	4.0735	16.5930	0.9995	0.0660
18	5518	2	2	BA⁺	BG**	1.0768	0.4659	0.0000	15	52.0478	8.0773	65.2426	0.9982	0.1552
18	5528	1	1	BA*	BS**	0.5961	1.3450	-5.0231	15	15.8556	5.7838	33.4519	0.9792	0.3648
18	5528	2	1	BA⁺	BG**	0.5415	0.7558	-0.2264	14	46.4155	2.8352	8.0383	0.9995	0.0611
18	5528	2	2	BA*	BG**	0.5918	0.7527	-0.2666	. 15	51.4652	3.1689	10.0419	0.9995	0.0616
18	5538	1	1	BA*	BS**	0.6547	0.7629	-0.8125	15	15.6929	3.5963	12.9334	0.9974	0.2292
18	5538	1	2	BA*	BS**	0.6262	0.7890	-0.8639	15	15.3877	2.2576	5.0969	0.9989	0.1467
18	5538	2	1	BA*	BG**	0.6834	0.5664	-0.1700	15	38.8131	6.4711	41.8752	0.9975	0.1667
18	5538	2	2	BA*	BG**	0.7562	0.4858	-0.1272	15	35.0845	6.5490	42.8899	0.9975	0.1867
18	6012	1	1	A1	TS01	1.4520	0.1806	-2.2634	15	15.7662	1.1087	1.2292	0.9999	0.0703
18	6012	1	2	A2	TS03	1.3473	0.2058	-3.0076	15	17.5070	1.3145	1.7279	0.9998	0.0751
18	9020	1	1	A1	TS02	1.8770	0.3469	-0.7316	15	19.4777	3.0350	9.2112	0.9997	0.1558
18	9020	1	2	A2	TS04	1.5309	0.1642	-1.3203	15	11.3356	1.6831	2.8328	0.9998	0.1485
18	9020	2	1	BA*	BG**	0.8442	0.5724	-0.0204	15	54.5464	6.2601	39.1891	0.9987	0.1148
18	9020	2	2	BA*	BG**	0.6308	0.7969	-0.1728	15	64.1682	4.6479	21.6026	0.9992	0.0724
19	0102	1	3	A5	TS10	1.4885	0.2082	-0.7352	14	9.2961	0.7045	0.4963	1.0000	0.0758
19	0103	1	3	A1	TS02	2.1248	0.2735	0.0000	15	21.6801	3.3727	11.3749	0.9998	0.1556
19	0106	1	3	A13	TS26	0.8838	0.1107	-3.3215	15	12.2909	1.2949	1.6768	0.9995	0.1054
19	0110	1	3	A10	TS20	1.2411	0.1176	-1.4465	15	9.7311	1.8654	3.4797	0.9997	0.1917
19	0110	1	3	A11	TS22	1.3405	0.1687	-1.1501	15	9.0827	1.5498	2.4019	0.9998	0.1706
19	0112	1	3	A9	TS18	1.6401	0.1607	-0.4726	15	8.2393	1.6502	2.7231	0.9999	0.2003
19	1044	1	1	BA*	BS**	1.6966	0.2525	-1.3993	12	12.4633	1.4705	2.1623	0.9999	0.1180
19	1044	1	2	A2	TS03	2.0502	0.2428	-0.8598	15	15.2075	2.8095	7.8932	0.9998	0.1847
19	3006	1	1	A1	TS01	0.9369	0.1784	-3.9041	15	13.9932	1.9829	3.9321	0.9988	0.1417
19	3006	1	2	A2	TS03	1.4405	0.2547	-2.2705	15	15.9696	1.7289	2.9892	0.9998	0.1083
19	3009	1	1	BA*	BS**	0.7151	0.7334	-1.4018	15	14.5448	2.0739	4.3010	0.9991	0.1426
19	3009	1	2	BA*	BS**	0.8679	0.4185	-1.8791	14	10.7663	2.3589	5.5645	0.9989	0.2191
19	3009	2	2	BA*	BG**	0.9315	0.4114	-0.5268	15	24.1217	7.9768	63.6300	0.9959	0.3307
19	3009	2	1	BA*	BG**	2.1712	0.3023	-0.3806	15	38.1122	4.4926	20.1835	0.9997	0.1179
19	3028	1	1	BA*	BS**	1.1183	0.2181	-2.5405	15	12.9861	1.2676	1.6069	0.9998	0.0976
19	3028	1	2	BA*	BS**	0.8075	0.2894	-3.0993	15	10.5754	1.2393	1.5358	0.9995	0.1172
19	3033	1	1	A1	TS01	1.2537	0.2884	-2.1453	15	13.4837	2.4316	5.9129	0.9994	0.1803
19	3033	1	2	A2	TS03	1.4562	0.2610	-1.8767	15	14.4529	2.0627	4.2547	0.9997	0.1427
19	3055	1	1	A1	TS01	0.7844	0.1595	-2.7298	15	9.4542	0.7456	0.5560	0.9998	0.0789
.19	3055	1	2	TP*	BS**	1.6817	0.2754	-1.7494	15	16.1413	1.5473	2.3941	0.9999	0.0959
19	3055	2	1	BA*	BG**	0.8248	0.7487	-0.1108	15	80.6146	7.5650	57.2297	0.9986	0.0938
19	3055	2	2	TP*	BG**	0.6546	0.7635	-0.0902	15	65.5517	4.1582	17.2907	0.9994	0.0634
19	5042	1.	2	BA*	BS**	0.9288	0.5303	-2.7635	15	13.7502	2.3804	5.6664	0.9988	0.1731
19	5042	1	1	BA*	BS**	1.2637	0.3349	-1.3799	15	12.7373	2.2182	4.9203	0.9996	0.1741
19	5046	1	1	BA*	BS**	0.9709	0.6113	-1.9458	15	15.6701	2.9761	8.8572	0.9987	0.1899
19	5046	1	2	TP*	BS**	1.0231	0.5057	-1.7480	15	14.2972	3.2284	10.4228	0.9987	0.2258

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

State	SHRP	Layer	Test	Loc.	Sample				No.	Std			-2	
Code	ID	No.	No.	No.	No.	k1	k2	k3	Points	Dev(M _R)	RMSE	MSE	R²	S _• /S _v
19	6049	1	1	A1	TS01	0.8254	0.1955	-3.3212	15	11.3103	2.1609	4.6693	0.9985	0.1911
19	6049	1	2	TP*	BS**	1.0164	0.1962	-3.3031	15	13.8351	1.5015	2.2546	0.9995	0.1085
19	6150	1	1	BA*	BS*	1.2065	0.2198	-1.2748	15	9.2849	0.4994	0.2494	1.0000	0.0538
19	6150	1	2	A2	TS03	0.4963	0.6050	-4.1992	15	8.4976	1.7196	2.9569	0.9970	0.2024
19	6150	2	1	BA*	BG**	1.5332	0.3766	-0.5671	14	33.7438	13.8003	190.4490	0.9948	0.4090
19	6150	2	2	BA*	BG**	1.6464	0.4173	-0.5915	14	40.4489	12.1557	147.7598	0.9967	0.3005
19	9126	1	1	A1	TS01	1.2189	0.3434	-2.9238	15	16.0036	2.5706	6.6081	0.9991	0.1606
19	9126	1	2	A2	TS03	0.8953	0.3317	-4.0784	15	13.3944	1.6416	2.6948	0.9991	0.1226
19	9126	3	1	BA*	BG**	0.7340	0.8203	-0.1035	15	83.6418	8.1848	66.9905	0.9984	0.0979
19	9126	3	2	TP*	BG**	0.8565	0.5750	0.0000	15	56.6504	11.3103	127.9232	0.9958	0.1997
20	0101	1	3	A5	TS12	0.9228	0.2176	-2.1077	14	9.1198	1.1220	1.2589	0.9998	0.1230
		1	3	A23	TS53			-2.0891			2.2341			
20	0110					1.0282	0.3089		15	11.2622		4.9913	0.9993	0.1984
20	0203	1	2	B1	BS01	1.1307	0.2483	-1.0144	15	8.7788	1.4964	2.2392	0.9998	0.1705
20	1005	1	1	A1	TS01	0.9171	0.0998	-2.8131	15	11.7648	0.8882	0.7888	0.9998	0.0755
20	1005	1	2	A2	TS03	1.0058	0.2793	-3.0416	15	13.2970	1.2214	1.4917	0.9997	0.0919
20	1006	.1	1	BA*	BS*	1.0688	0.3618	-2.5638	15	13.5425	2.8128	7.9117	0.9988	0.2077
20	1006	11	2	TP*	BS**	0.5343	0.3354	-2.1834	15	6.4991	2.5681	6.5950	0.9963	0.3951
20	1009	1	2	TP*	B\$**	1.4287	0.2558	-2.7932	15	17.8480	2.7120	7.3549	0.9993	0.1519
20	1009	1	1	BA*	BS**	0.5444	0.7363	·1.9292	15	10.6355	2.4440	5.9731	0.9974	0.2298
20	1010	. 1	1	A1	TS01	0.8326	0.3336	-2.3971	15	9.9990	1.6626	2.7641	0.9993	0.1663
20	1010	1	2	A2	TS03	0.9594	0.3163	-2.9697	15	12.6818	2.0378	4.1528	0.9991	0.1607
20	3013	1	1	A1	TS01	1.1909	0.1432	-1.1052	15	7.6014	0.8713	0.7592	0.9999	0.1146
20	3013	1	2	BA*	BS**	1.0051	0.1964	-1.7240	15	9.1026	1.4938	2.2315	0.9997	0.1641
20	3015	1	1	A1	TS01	1.1866	0.1883	-1.1641	15	8.3484	1.1655	1,3584	0.9999	0.1396
20	3015	1	2	BA*	BS**	0.9001	0.2254	-1.3863	15	7.3082	0.8490	0.7207	0.9999	0.1162
20	3060	1	1	BA*	BS**		0.3049	-1.9478						
						1.0383			15	10.9510	1.4304	2.0462	0.9997	0.1306
20	3060	1	2	A2	TS03	0.8682	0.2030	-2.7581	15	10.6802	0.8186	0.6701	0.9998	0.0766
20	4016	_1_	1	BA*	BS**	1.3182	0.1903	-0.9351	15	8.4555	1.0999	1.2099	0.9999	0.1301
20	4016	1	2	A2	TS03	0.8293	0.2439	-3.0881	15	10.9427	1.0727	1.1506	0.9996	0.0980
20	4016	2	1	BA*	BG**	0.9342	0.5967	0.0000	15	65.9965	4.3712	19.1073	0.9995	0.0662
20	4052	1	1	BA*	BS**	0.6744	0.5186	-1.9799	13	9.6190	1.3937	1.9425	0.9994	0.1449
20	4052	1	2	BA*	BS**	0.6321	0.6997	-0.7172	15	13.8640	2.4230	5.8709	0.9987	0.1748
20	4053	1	1	BA*	BS**	0.8396	0.4462	-3.5158	15	12.6201	3.0494	9.2991	0.9971	0.2416
20	4053	1	2	A2	TS03	0.8677	0.2452	-5.5103	15	14.7351	2.5128	6.3142	0.9969	0.1705
20	4054	1	1	A1	TS01	1.0542	0.1421	-1.7260	15	9.2772	0.8409	0.7071	0.9999	0.0906
20	4054	1	2	BA*	BS**	0.9615	0.2514	-0.9968	15	7.5498	1.5755	2.4823	0.9997	0.2087
20	4063	1	1	A1	TS02	0.6180	0.3951	-4.0257	15	9.5802	2.1407	4.5824	0.9969	0.2234
20	4063	1	2	BA*	BS**	0.8238	0.6084	-2.3082	15	13.1022	2.1113	4.4577	0.9990	0.1611
20	4067	1	1	BA*	BS**	0.5004	0.1924	-5.4471	15	8.3854	0.8444	0.7131	0.9989	0.1007
20	4067	1	2	A2	TS04	1.4136	0.1924	-1.2489	15	9.9226	1.7860	3.1896	0.9998	0.1800
20	4067	3	1	BA*	BG**	0.5290		-0.2554	13					
							0.8166			47.7971	3.0617	9.3741	0.9995	0.0641
20	4067	3	2	TP*	BG**	0.7695	0.6528	-0.0573	14	56.2055	2.8450	8.0940	0.9997	0.0506
20	6026	1	1	A1	TS01	1.3415	0.1781	-1.0188	15	8.7244	1.9034	3.6229	0.9998	0.2182
20	6026	1	2	A2	TS04	1.4843	0.2690	-0.5641	15	12.1988	1.9063	3.6340	0.9998	0.1563
20	7073	1	1	BA*	BS**	0.7014	0.6221	-0.6926	15	13.5394	1.8848	3.5526	0.9993	0.1392
20	7073	1	2	BA*	BS**	0.6359	0.7141	-0.7743	15	14.1462	1.2418	1.5421	0.9997	0.0878
20	7073	2	2	BA*	BG**	1.0509	0.4321	0.0000	15	45.7356	4.2702	18.2344	0.9994	0.0934
20	7073	2	1	BA*	BG**	0.6247	0.7330	-0.2781	15	51.2025	2.2313	4.9787	0.9997	0.0436
20	7085	1	1	A1	TS01	0.6522	0.2634	-3.6317	15	9.2618	0.8985	0.8073	0.9995	0.0970
20	7085	1	2	A2	TS03	1.0001	0.1866	-2.0313	15	9.9657	0.8299	0.6887	0.9999	0.0833
20	7085	2	2	BA*	BG**	0.9166	0.6488	-0.2080	15	62.9350	5.1951	26.9889	0.9992	0.0825
20	7085	2	1	BA*	BG**	1.1409	0.5790	-0.4235	15	54.8568	7.9566	63.3077	0.9983	0.1450
20	9037	1	1	A1	TS02	0.6495	0.4006	-3.3312	15	9.2880	1.9667	3.8678	0.9980	0.2117
20	9037	1	2	A2	TS03	0.8944	0.4029	-3.3992	15	12.8256	2.0650	4.2644	0.9988	0.1610
20	9037	2	1	BA*	BG**	0.7377	0.7179	0.0000	15	70.8941	5.5094	30.3536	0.9991	0.0777
20	9037	2	2	BA*	BG**	1.5178	0.3971	0.0000	15	58.9320	4.4759	20.0333	0.9997	0.0759
	500/		ے	24	50	1.0178	0.08/1	J.0000	10	J0.532U	7.7/08	೭೮.೮೦೦೦	U.555/	0.0708

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

21	<u> </u>	0		-				ļ				,		r	Ι
21		1 - 1					. ₆₄	ko.	L2			DMGE	MeE	D ²	6.46
21				-											
21		_													
21															
21				_											
21				_											
21				_											
21															
21														_	
21															
21				_											
21															
21				-											
21															
21															
21															
21															0.1890
22 0113 1 1 1 B6 BS06 1.0059 0.1915 0.0000 15 9.4617 6.2752 39.3779 0.9966 0.6632 22 0117 1 2 B8 BS05 0.7686 0.1456 0.0000 15 4.8028 2.1216 6.3109 0.9991 0.3588															
22 0113 3 2 B12 BG12 0.7163 0.2062 -0.6477 15 4.8137 1.7752 3.1514 0.9994 0.3688 22 0117 1 2 B5 BS05 0.7686 0.7686 0.0000 15 4.8062 2.5121 6.3106 0.9991 0.5231 22 0118 1 2 B4 BS04 0.8679 0.1866 0.0000 15 7.4066 4.1489 19.5269 0.9972 0.9991 22 0118 1 2 B1 BS04 0.8679 0.1866 0.0000 15 7.4066 1.6997 2.8890 0.9978 0.9523 22 0119 1 2 B1 BS01 0.6042 0.2110 -0.2100 15 4.4753 1.6997 2.8890 0.9993 0.3752 22 0119 2 1 B7 BS07 0.4080 0.5374 0.7097 15 6.8020 1.1648 1.3567 0.9992 0.1712 22 0121 1 2 B2 BS02 0.4437 0.4391 -0.4960 15 6.8020 1.1648 1.3567 0.9992 0.1712 22 0124 1 1 BA3 BS03 0.8404 0.1335 0.0000 15 5.1390 3.0860 9.5233 0.9988 0.6005 22 4001 1 1 BA4 BS** 1.3809 0.3573 -0.5343 15 15.8033 4.5453 2.06596 0.9990 0.2876 22 4001 1 1 BA4 BS** 0.6173 0.6172 -3.4844 15 1.6583 4.7550 0.9992 0.0461 22 4001 1 2 BA* BG** 0.6173 0.6172 -0.3508 15 41.1482 6.8990 4.7.5550 0.9999 0.1672 23 0506 1 2 TP1 BS55 0.5087 0.5999 0.0732 15 10.6188 1.2952 1.6776 0.9995 0.0441 23 0506 1 2 TP1 BS55 0.6078 0.5999 0.0732 15 10.6188 1.2952 1.6776 0.9995 0.02876 23 1012 1 1 BA* BS** 0.6022 0.5781 0.0000 15 13.3442 2.7335 7.4722 0.9995 0.0441 23 1012 1 1 BA* BS** 0.6022 0.5781 0.0000 15 13.4453 1.2952 1.6776 0.9995 0.02876 23 1026 1 2 TP BS55 0.8309 0.6007 -0.9905 15 1.48484 0.3974 1.7690 0.9999 0.0441 23 1012 1 2 BA* BG** 0.5484 0.7491 0.2655 14 4.84540 3.9740 1.57924 0.9990 0.0820 23 1026 1 2 TP BS55 0.8309 0.6075 0.0990 15 1.14858 1.18099 1.57924 0.9990 0.0820 23 1026 1 2 TP BS55 0.8309 0.6075 0.0990 15 1.14858 1.18099 1.57924 0.9990 0.0820 23 1026 1 2 TP BS55 0.8309 0.6075 0.0990 15 1.14859 1.18099 1.57924 0.9990 0.0820 23 1026 1 2 TP BS55 0.8309 0.6075 0.0990 15 1.14859 1.18090 1.57924 0.9990 0.0820 23 1026 1 2 TP BS55 0.8309 0.6087 0.9905 15 1.48269 1.18090 1.18090 0.0820 23 1026 1 2 TP BS55 0.8309 0.6087 0.9905 15 1.48269 1.18090 1.18090 0.0820 23 1026 1 2 TP BS55 0.8309 0.6087 0.9905 15 1.48269 1.18090 0.0820 0.0820 24 1634 2 1 BA* BG** 0.6756 0.6766 0.0809 15 5.54640 1.18090 1.18090 0.09999 0.09999 0.09999 0.09999 0.09999 0.09999 0.09999 0		_													0.0893
22 0119 1 2 B4 SS0 0.7686 0.1458 0.000 15 4.8028 2.5121 6.3109 0.9991 0.5221 22 0118 1 2 B4 SS0 0.8679 0.1866 0.0000 15 7.4066 4.4189 19.5289 0.9978 0.5968 22 0118 2 1 B10 B610 0.8080 0.3283 1.0674 15 6.6490 1.6897 2.2890 0.9993 0.2566 22 0119 1 2 B1 B801 0.6042 0.2110 0.2100 15 4.4753 1.6793 2.8201 0.9993 0.2566 22 0119 2 1 B7 B607 0.4108 0.5574 0.7097 15 6.8020 1.1648 1.3667 0.9992 0.1712 22 0121 1 2 B2 SS0 0.44937 0.4391 0.4990 16 6.3456 1.7877 3.1867 0.9998 0.2817 22 0124 1 1 B B3 BS03 0.8404 0.1335 0.0000 15 5.1390 3.0860 9.5235 0.9988 0.6005 22 4001 1 1 BA BS" 1.4844 0.8607 2.3484 15 32.2921 11.1757 124.8952 0.9923 0.3456 22 4001 1 2 BA BS" 1.4894 0.8607 2.3484 15 32.2921 11.1757 124.8952 0.9923 0.3461 22 4001 1 2 BA BS" 1.4894 0.8607 2.3484 15 18.2921 11.1757 124.8952 0.9923 0.3461 22 4001 1 2 BA BS" 1.4844 0.8607 3.0549 15 15.803 3.0860 9.5235 0.9988 0.6005 22 4001 1 2 BA BS" 1.4844 0.8607 3.0549 15 15.803 3.0860 9.5235 0.9988 0.6005 22 4001 1 2 BA BS" 1.4844 0.8607 3.0549 15 15.803 3.0860 9.5235 0.9988 0.6005 23 0506 1 2 TP1 BS55 0.5087 0.5699 0.0732 15 10.6158 1.2952 1.6776 0.9995 0.1276 23 0506 1 2 TP1 BS55 0.5087 0.5699 0.0732 15 10.6158 1.2952 1.6776 0.9995 0.1276 23 0506 1 2 TP1 BS55 0.5087 0.5699 1.0732 15 10.6158 1.2952 1.6776 0.9995 0.1226 23 1012 1 1 BA' BG* 0.4846 0.5852 0.0566 15 31.7366 1.3996 1.3999 0.0441 23 1012 1 1 BA' BG* 0.4846 0.5852 0.0566 15 31.7366 1.3996 1.3999 0.0441 23 1012 1 2 TP BS55 0.6974 0.6371 -1.5406 15 12.8687 4.1763 17.4412 0.9985 0.3292 23 1022 2 1 BA' BG* 0.6736 0.6746 0.7491 0.2655 14 48.4540 1.3959 3.9905 0.1205 23 103 1 2 BA' BG* 0.6736 0.6746 0.0907 15 15.4866 1.9999 3.2613 0.9999 1.0136 23 7023 1 1 BA' BG* 0.6736 0.6746 0.0907 15 15.48687 4.1763 17.4412 0.9986 0.0827 23 1012 2 1 BA' BG* 0.6736 0.6746 0.0907 15 15.48687 4.1763 17.4412 0.9986 0.0827 24 1634 2 1 BA' BG* 0.6736 0.6746 0.0907 15 15.48687 4.1763 17.4412 0.9986 0.0927 24 1634 2 1 BA' BG* 0.6736 0.6746 0.0907 15 15.48680 1.9999 3.2613 0.9999 0.08276 24 1634 2 1 BA' BG* 0.6736 0.6746 0.0907 15 15.48680 1															
22 0118 1 2 B4 BS04 0.8679 0.1866 0.0000 15 7.4066 4.4189 19.5269 0.9978 0.5966 22 0118 2 1 B10 BG10 0.8005 0.3283 1.10674 15 6.6490 1.6997 2.8201 0.9993 0.2556 22 0119 1 B7 BS01 0.6042 0.2110 0.2100 15 4.4753 1.6987 2.2201 0.9993 0.3752 22 0121 1 2 BS BS02 0.4437 0.4990 15 6.3456 1.7877 3.1967 0.9992 0.1712 22 1021 1 1 BA BSS0 8.6404 0.350 1.5000 15 6.3456 1.7777 3.1967 0.9998 0.6005 22 4001 1 2 BA* BS**** 1.3890 0.3573 -0.5343 15 15.8033 4.5452 2.06596 0.9999<														0.9994	
22 0118 2 1 B10 BG10 0.6805 0.3283 -1.0674 15 6.8490 1.6997 2.8890 0.9993 0.2556 22 0119 1 2 B1 BS01 0.6042 0.2110 -0.2100 15 4.4753 1.6793 2.8201 0.9993 0.3752 22 0121 1 2 B2 BS00 0.4437 0.4391 -0.4960 15 6.8020 1.1712 0.9998 0.2817 22 0124 1 1 B3 BS00 0.4437 0.4891 -0.4960 15 6.8496 1.1767 1.9985 0.2817 22 4001 1 1 BA* BS*** 1.8900 0.3573 -0.5343 15 1.5830 3.0860 9.2325 0.9982 0.2876 22 4001 1 2 BA* BS**** 1.0857 2.93844 15 1.5833 15 1.5825 1.2852 0.9993		_													
22 0119 1 2 B1 BS01 0.6042 0.2110 -0.2100 15 4.4753 1.6793 2.8201 0.9993 0.3752 22 0119 2 1 B7 BG07 0.4108 0.5374 -0.7097 15 6.8020 1.1648 1.3567 0.9998 0.1712 22 0124 1 1 B3 BS03 0.8404 0.1335 0.0000 15 5.1390 3.0860 9.5235 0.9988 0.6005 22 4001 1 1 BA* BS** 1.4944 0.6007 -2.3484 15 32.2921 11.1757 124.8992 0.9930 0.2876 22 4001 1 2 BA* BS** 1.3809 0.3573 0.5543 15 15.8033 4.5453 2.05596 0.9990 0.2876 23 0506 1 2 TP1 BS55 0.507 0.5699 -0.0732 15 41.1482 6.8960<	22	0118	1	2	B4	BS04	0.8679	0.1866	0.0000	15	7.4066	4.4189	19.5269	0.9978	0.5966
22 0119 2 1 B7 BG07 0.4108 0.5374 -0.7097 15 6.8020 1.1648 1.3567 0.9992 0.1712 22 0121 1 2 B2 BS02 0.4437 0.4991 -0.4960 15 6.3466 1.7877 3.1957 0.9985 0.0221 22 0124 1 1 B3 BS03 0.8040 0.1335 0.0000 15 5.1390 3.0860 9.5235 0.9980 0.0025 22 4001 1 2 BA* BS*** 1.3809 0.3573 0.5343 15 15.8033 4.5453 20.6596 0.9990 0.2876 22 4001 2 1 BA* BS*** 0.6072 0.5599 -0.0732 15 10.6188 1.2952 1.6776 0.9999 0.6767 23 0506 1 2 TP1 BS55 0.5071 0.5999 -0.0732 15 10.6188 1.2952<	22	0118	2		B10	BG10	0.6805	0.3283	-1.0674	15	6.6490	1.6997	2.8890	0.9993	0.2556
22 0121 1 2 B2 BS02 0.4437 0.4391 -0.4960 15 6.3456 1.7877 3.1957 0.9985 0.2817 22 0124 1 1 B3 BS03 0.8404 0.1335 0.0000 15 5.1390 3.0860 9.5235 0.9982 0.6005 22 4001 1 1 BA* BS** 1.4944 0.8507 -2.3484 15 32.2921 11.1767 124.8952 0.9923 0.3461 22 4001 2 1 BA* BS** 1.4944 0.8507 -3.534 15 15.8033 4.5453 20.6969 0.9996 0.1676 23 0506 1 2 TP1 BS55 0.5007 0.5699 -0.0732 15 10.6158 1.2952 1.6776 0.9998 0.0421 23 1052 1 2 TP1 BS55 0.5002 0.5781 0.0000 15 13.342 2.7355	22	0119	1	2	B1	BS01	0.6042	0.2110	-0.2100	15	4.4753	1.6793	2.8201	0.9993	0.3752
22 0124 1 1 B3 BS03 0.8404 0.1335 0.0000 15 5.1390 3.0860 9.5235 0.9988 0.6005 22 4001 1 1 BA* BS** 1.4944 0.8507 -2.3484 15 32.2921 11.1757 124.8952 0.9923 0.3461 22 4001 1 2 BA* BS** 1.3809 0.3573 -0.5343 15 15.8033 4.5453 20.6569 0.9990 0.2876 22 4001 2 1 BA* BG** 0.6772 -0.3508 15 41.1482 6.8960 47.5550 0.9999 0.1676 23 0506 1 2 TP1 BS55 0.5087 0.5669 -0.0732 15 10.6158 1.2952 1.6776 0.9995 0.1220 23 1052 1 1 BA* BS** 0.6022 0.5781 0.0000 15 13.342 2.7335 7.	22	0119	2	1	B7	BG07	0.4108	0.5374	-0.7097	15	6.8020	1.1648	1.3567	0.9992	0.1712
22 4001 1 1 BA' BS'' 1.4944 0.8507 -2.3484 15 32.2921 11.1757 124.8952 0.9923 0.3451 22 4001 1 2 BA' BS'' 1.3809 0.3573 -0.5343 15 15.8033 4.5453 20.6596 0.9990 0.2876 22 4001 2 1 BA' BG'' 0.6173 0.6772 -0.3508 15 14.1482 6.8960 47.5550 0.9969 0.1676 23 0506 1 2 TP1 BS55 0.5067 0.5699 -0.0732 15 10.6158 1.2952 1.6776 0.9995 0.1220 23 0506 2 2 TP1 BG56 0.4848 0.5852 -0.0566 15 31.7966 1.3996 1.9590 0.9998 0.0441 23 1012 1 1 BA' BG'' 0.6074 0.6371 -1.5406 15 12.6867 4.1763 17.4412 0.9958 0.3292 23 1012 1 2 TP BS55 0.8974 0.6371 -1.5406 15 12.6867 4.1763 17.4412 0.9958 0.3292 23 1012 2 1 BA' BG'' 0.5464 0.7491 -0.2655 14 48.4540 3.9740 15.7924 0.9990 0.0820 23 1026 1 2 TP BS55 0.8300 0.6087 -0.9905 15 14.8574 1.8059 3.2613 0.9996 0.1215 23 3013 1 2 BA' BG'' 0.6736 0.6736 0.6278 -0.4215 15 14.2588 1.9750 3.9005 0.9993 0.1387 23 3013 1 2 BA' BG'' 0.6736 0.6736 0.6736 -0.1825 15 14.2588 1.9750 3.9005 0.9993 0.1387 23 3014 1 1 BA' BS'' 0.6736 0.6746 -0.1825 15 51.0720 3.2040 10.2659 0.9996 0.0520 23 7023 1 1 BA' BG'' 0.6736 0.6746 -0.1825 15 51.0720 3.2040 10.2659 0.9996 0.1215 24 1632 2 1 BA' BS'' 0.6913 0.6144 0.0000 14 16.4290 3.1704 10.0515 0.9986 0.1930 23 7023 1 1 BA' BG'' 0.7205 0.7499 -0.9056 15 17.3940 4.0928 16.7511 0.9976 0.2353 24 1632 2 1 BA' BG'' 0.5811 0.6991 -0.0579 15 52.1860 2.9777 8.8666 0.9992 0.0820 24 1634 1 2 TP BS55 0.8622 0.6097 -0.6792 15 55.4663 11.5692 133.8464 0.9999 0.2085 24 1634 2 1 BA' BG'' 0.5811 0.6991 -0.0579 15 52.1860 2.9777 8.8666 0.9999 0.0580 24 1634 2 1 BA' BG'' 0.5811 0.6991 -0.0579 15 55.4663 11.5692 133.8464 0.9999 0.2085 24 1634 2 1 BA' BG'' 0.5814 0.6288 0.5139 -0.1333 15 41.6713 3.4960 12.221 0.9994 0.0839 24 1634 2 1 BA' BG'' 0.8824 0.5890 -0.2614 15 55.4663 11.5692 133.8464 0.9999 0.2085 24 1634 1 2 TP BS55 0.8622 0.6097 -0.6792 15 54.8694 11.5692 133.8464 0.9999 0.2085 24 1634 1 2 TP BS55 0.6866 0.4912 15 55.4663 11.5692 133.8464 0.9999 0.2085 24 1634 1 2 BA' BG'' 0.8824 0.5890 -0.2614 15 54.8968 11.5692 133.8464 0.9999 0.2085 24 1634 1 2 BA' BG'' 0.8826 0.5839 0.6086	22	0121	1	2	B2	BS02	0.4437	0.4391	-0.4960	15	6.3456	1.7877	3.1957	0.9985	0.2817
22 4001 1 2 BA* BS** 1.3809 0.9573 -0.5343 15 15.8033 4.5453 20.6596 0.9990 0.2876 22 4001 2 1 BA* BG** 0.6173 0.6772 -0.3508 15 41.1482 6.8960 47.5550 0.9969 0.1676 23 0506 1 2 TP1 BG56 0.4848 0.5652 -0.0566 15 31.7366 1.9996 1.9590 0.9998 0.0441 23 1012 1 1 BA* BS** 0.6022 0.5781 0.0000 15 13.3442 2.7335 7.4722 0.9985 0.2048 23 1012 1 2 TP BS55 0.6974 0.6371 -1.5406 15 12.8667 4.1763 17.4412 0.9986 0.3292 23 1012 2 1 BA* BG** 0.6756 0.6279 -0.4215 15 14.8574 1	22	0124	1	1	B 3	BS03	0.8404	0.1335	0.0000	15	5.1390	3.0860	9.5235	0.9988	0.6005
22 4001 2 1 BA* BG** 0.6173 0.6772 -0.3508 15 41.1482 6.8980 47.5550 0.9985 0.1676 23 0506 1 2 TP1 BSS5 0.5087 0.5899 -0.0732 15 10.6188 1.2952 1.8776 0.9995 0.1220 23 0506 2 2 TP1 BSS5 0.6022 0.5781 0.0000 15 31.3342 2.7335 7.4722 0.9985 0.2048 23 1012 1 1 BA* BG** 0.6024 0.6371 -1.5406 15 12.8867 4.1763 17.4412 0.9985 0.2048 23 1012 2 1 BA* BG** 0.6464 0.7491 -0.2655 14 48.4540 3.9740 15.7924 0.9990 0.0820 23 1026 1 2 BA* BS** 0.6736 0.6778 -0.4215 15 14.2368	22	4001	1	1	BA*	BS**	1.4944	0.8507	-2.3484	15	32.2921	11.1757	124.8952	0.9923	0.3461
23 0506 1 2 TP1 BS55 0.5087 0.5699 -0.0732 15 10.6158 1.2952 1.6776 0.9998 0.1220 23 0506 2 2 TP1 BG56 0.4848 0.5852 -0.0566 15 31.7366 1.3996 1.9590 0.9998 0.0441 23 1012 1 1 BA* BS** 0.6022 0.5781 0.0000 15 13.3442 2.7335 7.4722 0.9985 0.2048 23 1012 1 2 TP BS55 0.6974 0.6371 -1.5406 15 12.6867 4.1763 17.4412 0.9958 0.3292 23 1012 2 1 BA* BG** 0.5464 0.7491 -0.2655 14 48.4540 3.9740 15.7924 0.9999 0.0820 23 1026 1 2 TP BS55 0.8330 0.6087 -0.9905 15 14.8574 1.8059 3.2613 0.9995 0.1215 23 3013 1 2 BA* BG** 0.6755 0.6278 -0.4216 15 14.2368 1.9750 3.9005 0.9993 0.1387 23 3013 1 1 BA* BG** 0.6736 0.6746 -0.1825 15 51.0720 3.2040 10.2659 0.9995 0.0627 23 3014 1 1 BA* BS** 0.7025 0.7498 -0.9058 15 16.4056 2.2938 5.2613 0.9991 0.1398 23 7023 1 1 BA* BS** 0.6913 0.6144 0.0000 14 16.4290 3.1704 10.0515 0.9985 0.1930 23 7023 1 2 BA* BS** 0.6913 0.6442 0.0000 15 17.3940 4.0928 16.7511 0.9976 0.2353 24 1632 2 1 BA* BG** 0.5811 0.6991 -0.0579 15 52.1860 2.9777 8.8666 0.9995 0.0671 24 1632 2 1 BA* BG** 0.5811 0.6991 -0.0579 15 52.1860 2.9777 8.8666 0.9995 0.0671 24 1634 1 2 TP BS55 0.8622 0.6097 -0.6792 15 16.6796 3.7889 14.3557 0.9982 0.0272 24 1634 2 1 BA1 BG03 1.2617 0.5666 -0.4912 15 55.4963 11.5692 133.8464 0.9999 0.2085 24 2401 3 1 BA2 BG03 1.2617 0.5666 -0.4912 15 55.4963 11.5692 133.8464 0.9999 0.2085 24 2401 3 2 TP BS55 0.8622 0.6097 -0.6792 15 55.4963 11.5692 133.8464 0.9999 0.2085 24 2401 3 2 TP BS55 0.8622 0.6097 -0.4286 15 55.4963 11.5692 133.8464 0.9999 0.2085 24 2401 3 2 TP BS55 0.8622 0.6097 -0.4286 15 55.4963 11.5692 133.8464 0.9999 0.2085 24 2401 3 2 TP BS55 0.8622 0.6097 -0.4286 15 55.4963 11.5692 133.8464 0.9999 0.2085 24 2401 3 2 TP BS55 0.8622 0.6097 -0.4286 15 55.4963 11.5692 133.8464 0.9999 0.2085 24 2401 3 2 TP BS55 0.8682 0.5139 -0.1333 15 41.6073 3.4960 12.2221 0.9996 0.2085 24 2401 3 2 TP BS55 0.6888 0.5661 -0.4912 15 55.4963 11.5692 133.8464 0.9999 0.2085 24 2401 3 2 TP BS55 0.6086 0.6086 0.0000 14 15.49604 13.5967 0.9998 0.0087 25 1000 1 2 TP BS55 0.6086 0.6086 0.0000 14 15.4060 13.5967 0.9998	22	4001	1	2	BA*	BS**	1.3809	0.3573	-0.5343	15	15.8033	4.5453	20.6596	0.9990	0.2876
23 0506 2 2 TP1 BG56 0.4848 0.5852 -0.0566 15 31.7366 1.3996 1.9590 0.9998 0.0441 23 1012 1 1 BA* BS** 0.6022 0.5781 0.0000 15 13.3442 2.7335 7.4722 0.9985 0.2048 23 1012 1 2 TP BS55 0.6974 0.6371 -1.5406 15 12.6867 4.1763 17.4412 0.9956 0.3292 23 1012 2 1 BA* BG** 0.5464 0.7491 -0.2655 14 48.4540 3.9740 15.7924 0.9999 0.0820 23 1026 1 2 TP BS55 0.8330 0.6067 -0.9905 15 14.8574 1.8059 3.2613 0.9995 0.1215 23 3013 1 2 BA* BG** 0.6736 0.6746 -0.1825 15 14.2368 1.9750 3.9005 0.9993 0.1387 23 3013 2 1 BA* BG** 0.6736 0.6746 -0.1825 15 51.0720 3.2040 10.2659 0.9995 0.0627 23 3014 1 1 BA* BS** 0.7205 0.7498 -0.9058 15 16.4056 2.2938 5.2613 0.9991 0.1398 23 7023 1 1 BA* BS** 0.6913 0.6144 0.0000 14 16.4290 3.1704 10.0515 0.9995 0.1930 23 7023 1 2 BA* BS** 0.7020 0.6402 0.0000 15 17.3940 4.0928 16.7511 0.9976 0.2353 24 1632 2 1 BA* BG** 0.5811 0.6991 -0.0579 15 52.1860 2.9777 8.8666 0.9995 0.0571 24 1632 2 2 TP BG55 0.7274 0.6283 -0.2507 15 46.4612 4.1235 17.0034 0.9992 0.0888 24 1634 1 2 TP BS55 0.8622 0.6097 -0.6792 15 16.6796 3.7899 14.3557 0.9982 0.2272 24 1634 2 1 BA1 BG03 1.2617 0.5666 -0.4912 15 55.4963 11.5692 133.8464 0.9969 0.2085 24 2401 3 1 BA2 BG03 1.2617 0.5666 -0.4912 15 55.4963 11.5692 133.8464 0.9969 0.2085 24 2401 3 1 BA2 BG03 1.2617 0.5666 -0.4912 15 55.4963 11.5692 133.8464 0.9969 0.2085 24 2401 3 1 BA2 BG03 1.2617 0.5666 -0.4912 15 55.4963 11.5692 133.8464 0.9969 0.2085 24 2401 3 1 BA2 BG03 1.2617 0.5666 -0.4912 15 55.4963 11.5692 133.8464 0.9969 0.2085 24 2401 3 1 BA2 BG05 0.8884 0.5890 -0.2614 15 49.5448 7.9898 63.8367 0.9976 0.1613 24 5807 2 1 BA3 BG05 0.8888 0.5661 -0.0848 15 54.0839 8.5424 72.9731 0.9976 0.1613 24 5807 2 1 BA3 BG05 0.8888 0.5661 -0.0848 15 54.0839 8.5424 72.9731 0.9976 0.1613 24 5807 2 1 BA3 BG05 0.8888 0.5661 -0.0848 15 54.0839 8.5424 72.9731 0.9976 0.1613 24 5807 2 1 BA3 BG05 0.8888 0.5661 -0.0848 15 54.0839 8.5424 72.9731 0.9976 0.1613 24 5807 2 1 BA3 BG05 0.8888 0.5661 -0.0848 15 54.0839 8.5424 72.9731 0.9976 0.1613 24 5807 2 1 BA3 BG05 0.8888 0.5661 -0.0848 15 54.0839 8.5	22	4001	2	1	BA*	BG**	0.6173	0.6772	-0.3508	15	41.1482	6.8960	47.5550	0.9969	0.1676
23	23	0506	1	2	TP1	BS55	0.5087	0.5699	-0.0732	15	10.6158	1.2952	1.6776	0.9995	0.1220
23	23	0506	2	2	TP1	BG56	0.4848	0.5852	-0.0566	15	31.7366	1.3996	1.9590	0.9998	0.0441
23	23	1012	1	1	BA*	BS**	0.6022	0.5781	0.0000	15	13.3442	2.7335	7.4722	0.9985	0.2048
23	23	1012	1	2	TP	BS55	0.6974	0.6371	-1.5406	15	12.6867	4.1763	17.4412	0.9958	0.3292
23 3013 1 2 BA' BS'' 0.6755 0.6278 -0.4215 15 14.2368 1.9750 3.9005 0.9993 0.1387 23 3013 2 1 BA' BG'' 0.6736 0.6746 -0.1825 15 51.0720 3.2040 10.2659 0.9995 0.0627 23 3014 1 1 BA'' BS'' 0.7205 0.7498 -0.9058 15 16.4056 2.2938 5.2613 0.9991 0.1398 23 7023 1 1 BA'' BS'' 0.6913 0.6144 0.0000 14 16.4290 3.1704 10.0515 0.9985 0.1930 23 7023 1 2 BA' BS'' 0.7092 0.6402 0.0000 15 17.3940 4.0928 16.7511 0.9976 0.2353 24 1632 2 1 BA' BG'' 0.5811 0.6991 -0.0579 15 52.1860 2.9777 8.8666 0.9995 0.0671 24 1632 2 2 TP BG55 0.7274 0.6283 -0.2507 15 46.4612 4.1235 17.0034 0.9992 0.0888 24 1634 1 2 TP BS55 0.8622 0.6097 -0.6792 15 16.6796 3.7889 14.3557 0.9982 0.22872 24 1634 2 1 BA1 BG03 1.2617 0.5666 -0.4912 15 55.4963 11.5692 133.8464 0.9969 0.2085 24 2401 3 1 BA2 BG02 1.1044 0.4425 -0.0430 15 48.3967 11.6601 135.9578 0.9961 0.2409 24 2401 3 2 TP BG55 1.3128 0.5367 -0.4288 15 55.4645 13.6206 185.5200 0.9959 0.2456 24 2401 3 2 TP BG55 0.8828 0.5139 -0.1333 15 41.6713 3.4960 12.2221 0.9994 0.0839 24 2505 2 1 BA' BG'' 0.8228 0.5139 -0.1333 15 41.6713 3.4960 12.2221 0.9994 0.0839 24 5807 2 1 BA' BG'' 0.8228 0.5139 -0.1333 15 41.6713 3.4960 12.2221 0.9994 0.0839 24 5807 2 1 BA' BG'' 0.8828 0.5661 -0.0848 15 54.0839 8.5424 72.9731 0.9976 0.1613 25 1002 1 2 TP BS55 0.7155 0.6381 -0.8656 15 14.1209 3.4568 1.19492 0.9978 0.2448 25 1004 1 1 BA3 BS03 0.6026 0.6496 0.0000 14 15.8268 4.9782 24.7828 0.9953 0.3145 26 0120 1 2 B1 BS01 1.4818 0.3113 -2.9054 13 18.9804 1.3988 1.9567 0.9998 0.0737 26 0121 2 1 B9 BG01 1.0702 0.7188 -0.0101 14 94.1332 18.6328 347.1815 0.9945 0.1979 26 0122 1 1 B4 BS04 1.4366 0.2674 -1.4395 15 12.6822 1.5319 2.3466 0.9998 0.1208	23	1012	2	1	BA*	BG**	0.5464	0.7491	-0.2655	14	48.4540	3.9740	15.7924	0.9990	0.0820
23 3013 2 1 BA* BG** 0.6736 0.6746 -0.1825 15 51.0720 3.2040 10.2659 0.9995 0.0827 23 3014 1 1 BA* BS** 0.7205 0.7498 -0.9058 15 16.4056 2.2938 5.2613 0.9991 0.1398 23 7023 1 1 BA** BS** 0.6913 0.6144 0.0000 14 16.4290 3.1704 10.0515 0.9985 0.1930 23 7023 1 2 BA* BS** 0.7092 0.6402 0.0000 15 17.3940 4.0928 16.7511 0.9976 0.2353 24 1632 2 1 BA* BG** 0.5811 0.6991 -0.0579 15 52.1860 2.9777 8.8666 0.9995 0.0571 24 1632 2 2 TP BG55 0.7274 0.6283 -0.2507 15 46.4612 4.1235 17.0034 0.9992 0.0888 24 1634 1 2 TP BS55 0.8622 0.6097 -0.6792 15 16.6796 3.7889 14.3557 0.9982 0.2272 24 1634 2 1 BA1 BG03 1.2617 0.5666 -0.4912 15 55.4963 11.5692 133.8464 0.9969 0.2085 24 2401 3 1 BA2 BG02 1.1044 0.4425 -0.0430 15 48.3967 11.6601 135.9578 0.9961 0.2409 24 2401 3 2 TP BG55 1.3128 0.5367 -0.4288 15 55.4645 13.6206 185.5200 0.9995 0.2456 24 2805 2 1 BA* BG** 0.8228 0.5139 -0.1333 15 41.6713 3.4960 12.2221 0.9994 0.0839 24 25 1002 1 2 BA5 BG05 0.8888 0.5661 -0.0848 15 54.0839 8.5424 72.9731 0.9976 0.1613 24 5807 2 1 BA3 BS03 0.6026 0.6496 0.0000 14 15.8268 4.9782 24.7628 0.9953 0.3145 25 1004 1 1 BA3 BS03 0.6026 0.6496 0.0000 14 15.8268 4.9782 24.7628 0.9995 0.0737 26 0121 2 1 B9 BG01 1.0702 0.7188 -0.0101 14 94.1332 18.6328 347.1815 0.9998 0.1208	23	1026	1	2	TP	BS55	0.8330	0.6087	-0.9905	15	14.8574	1.8059	3.2613	0.9995	0.1215
23 3014 1 1 BA* BS** 0.7205 0.7498 -0.9058 15 16.4056 2.2938 5.2613 0.9991 0.1398 23 7023 1 1 BA** BS** 0.6913 0.6144 0.0000 14 16.4290 3.1704 10.0515 0.9985 0.1930 23 7023 1 2 BA* BS** 0.7092 0.6402 0.0000 15 17.3940 4.0928 16.7511 0.9976 0.2353 24 1632 2 1 BA* BG** 0.5811 0.6991 -0.0579 15 52.1860 2.9777 8.8666 0.9995 0.0571 24 1632 2 2 TP BG55 0.7274 0.6283 -0.2507 15 46.4612 4.1235 17.0034 0.9992 0.0888 24 1634 1 2 TP BS55 0.8622 0.6097 -0.6792 15 16.6796 3.7889 14.3557 0.9982 0.2272 24 1634 2 1 BA1 BG03 1.2617 0.5666 -0.4912 15 55.4963 11.5692 133.8464 0.9969 0.2085 24 2401 3 1 BA2 BG02 1.1044 0.4425 -0.0430 15 48.3967 11.6601 135.9578 0.9961 0.2409 24 2401 3 2 TP BG55 1.3128 0.5367 -0.4288 15 55.4645 13.6206 185.5200 0.9959 0.2456 24 2805 2 1 BA* BG** 0.8228 0.5139 -0.1333 15 41.6713 3.4960 12.2221 0.9994 0.0839 24 2805 2 1 BA* BG** 0.8228 0.5139 -0.1333 15 41.6713 3.4960 12.2221 0.9994 0.0839 24 5807 2 1 BA* BG** 0.8828 0.5139 -0.2614 15 49.5448 7.9898 63.8367 0.9976 0.1613 24 5807 2 2 BA5 BG05 0.8888 0.5661 -0.0848 15 54.0839 8.5424 72.9731 0.9976 0.1613 25 1002 1 2 TP BS55 0.7155 0.6381 -0.8656 15 14.1209 3.4568 11.9492 0.9978 0.2448 25 1004 1 1 BA3 BS03 0.6026 0.6496 0.0000 14 15.8268 4.9782 24.7828 0.9953 0.3145 26 0120 1 2 B1 BS01 1.4818 0.3113 -2.9054 13 18.9804 1.3988 1.9567 0.9998 0.0737 26 0121 2 1 B9 BG01 1.0702 0.7188 -0.0101 14 94.1332 18.6328 347.1815 0.9945 0.1979	23	3013	1	2	BA*	BS**	0.6755	0.6278	-0.4215	15	14.2368	1.9750	3.9005	0.9993	0.1387
23 7023 1 1 BA** BS*** 0.6913 0.6144 0.0000 14 16.4290 3.1704 10.0515 0.9985 0.1930 23 7023 1 2 BA* BS*** 0.7092 0.6402 0.0000 15 17.3940 4.0928 16.7511 0.9976 0.2353 24 1632 2 1 BA* BG*** 0.5811 0.6991 -0.0579 15 52.1860 2.9777 8.8666 0.9995 0.0571 24 1632 2 2 TP BG55 0.7274 0.6283 -0.2507 15 46.4612 4.1235 17.0034 0.9992 0.0888 24 1634 1 2 TP BS55 0.8622 0.6097 -0.6792 15 16.6796 3.7889 14.3557 0.9982 0.2272 24 1634 2 1 BA1 BG03 1.2617 0.5666 -0.4912 15 55.4963 <t< td=""><td>23</td><td>3013</td><td>2</td><td>1</td><td>BA*</td><td>BG**</td><td>0.6736</td><td>0.6746</td><td>-0.1825</td><td>15</td><td>51.0720</td><td>3.2040</td><td>10.2659</td><td>0.9995</td><td>0.0627</td></t<>	23	3013	2	1	BA*	BG**	0.6736	0.6746	-0.1825	15	51.0720	3.2040	10.2659	0.9995	0.0627
23 7023 1 1 BA** BS** 0.6913 0.6144 0.0000 14 16.4290 3.1704 10.0515 0.9985 0.1930 23 7023 1 2 BA* BS** 0.7092 0.6402 0.0000 15 17.3940 4.0928 16.7511 0.9976 0.2353 24 1632 2 1 BA* BG** 0.5811 0.6991 -0.0579 15 52.1860 2.9777 8.8666 0.9995 0.0571 24 1632 2 2 TP BG55 0.7274 0.6283 -0.2507 15 46.4612 4.1235 17.0034 0.9992 0.0888 24 1634 1 2 TP BS55 0.8622 0.6097 -0.6792 15 16.6796 3.7889 14.3557 0.9982 0.2272 24 1634 2 1 BA1 BG03 1.2617 0.5666 -0.4912 15 55.4963 1	23	3014	1	1	BA*	BS**	0.7205	0.7498	-0.9058	15	16.4056	2.2938	5.2613	0.9991	0.1398
23 7023 1 2 BA* BS** 0.7092 0.6402 0.0000 15 17.3940 4.0928 16.7511 0.9976 0.2353 24 1632 2 1 BA* BG** 0.5811 0.6991 -0.0579 15 52.1860 2.9777 8.8666 0.9995 0.0571 24 1632 2 2 TP BG55 0.7274 0.6283 -0.2507 15 46.4612 4.1235 17.0034 0.9992 0.0888 24 1634 1 2 TP BS55 0.8622 0.6097 -0.6792 15 16.6796 3.7889 14.3557 0.9982 0.2272 24 1634 2 1 BA1 BG03 1.2617 0.5666 -0.4912 15 55.4963 11.5692 133.8464 0.9969 0.2085 24 2401 3 1 BA2 BG02 1.1044 0.4425 -0.0430 15 48.3967 <td< td=""><td>23</td><td>7023</td><td>1</td><td>1</td><td>BA**</td><td>BS**</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	23	7023	1	1	BA**	BS**									
24 1632 2 1 BA* BG** 0.5811 0.6991 -0.0579 15 52.1860 2.9777 8.8666 0.9995 0.0571 24 1632 2 2 TP BG55 0.7274 0.6283 -0.2507 15 46.4612 4.1235 17.0034 0.9992 0.0888 24 1634 1 2 TP BS55 0.8622 0.6097 -0.6792 15 16.6796 3.7889 14.3557 0.9982 0.2272 24 1634 2 1 BA1 BG03 1.2617 0.5666 -0.4912 15 55.4963 11.5692 133.8464 0.9969 0.2085 24 2401 3 1 BA2 BG02 1.1044 0.4425 -0.0430 15 48.3967 11.6601 135.9578 0.9961 0.2409 24 2401 3 2 TP BG55 1.3128 0.5367 -0.4288 15 55.4645 <	23	7023	1	2	BA*	BS**	0.7092	0.6402					16.7511		
24 1632 2 2 TP BG55 0.7274 0.6283 -0.2507 15 46.4612 4.1235 17.0034 0.9992 0.0888 24 1634 1 2 TP BS55 0.8622 0.6097 -0.6792 15 16.6796 3.7889 14.3557 0.9982 0.2272 24 1634 2 1 BA1 BG03 1.2617 0.5666 -0.4912 15 55.4963 11.5692 133.8464 0.9969 0.2085 24 2401 3 1 BA2 BG02 1.1044 0.4425 -0.0430 15 48.3967 11.6601 135.9578 0.9961 0.2409 24 2401 3 2 TP BG55 1.3128 0.5367 -0.4288 15 55.4645 13.6206 185.5200 0.9959 0.2456 24 2805 2 1 BA* BG** 0.8228 0.5139 -0.1333 15 41.6713	24	1632	2	1	BA*	BG**	0.5811				52.1860				
24 1634 1 2 TP BS55 0.8622 0.6097 -0.6792 15 16.6796 3.7889 14.3557 0.9982 0.2272 24 1634 2 1 BA1 BG03 1.2617 0.5666 -0.4912 15 55.4963 11.5692 133.8464 0.9969 0.2085 24 2401 3 1 BA2 BG02 1.1044 0.4425 -0.0490 15 48.3967 11.6601 135.9578 0.9961 0.2409 24 2401 3 2 TP BG55 1.3128 0.5367 -0.4288 15 55.4645 13.6206 185.5200 0.9959 0.2456 24 2805 2 1 BA* BG** 0.8228 0.5139 -0.1333 15 41.6713 3.4960 12.2221 0.9994 0.0839 24 5807 2 1 BA* BG** 0.8824 0.5890 -0.2614 15 49.5448															
24 1634 2 1 BA1 BG03 1.2617 0.5666 -0.4912 15 55.4963 11.5692 133.8464 0.9969 0.2085 24 2401 3 1 BA2 BG02 1.1044 0.4425 -0.0430 15 48.3967 11.6601 135.9578 0.9961 0.2409 24 2401 3 2 TP BG55 1.3128 0.5367 -0.4288 15 55.4645 13.6206 185.5200 0.9959 0.2456 24 2805 2 1 BA* BG** 0.8228 0.5139 -0.1333 15 41.6713 3.4960 12.2221 0.9994 0.0839 24 5807 2 1 BA* BG** 0.8824 0.5890 -0.2614 15 49.5448 7.9898 63.8367 0.9976 0.1613 24 5807 2 2 BA5 BG05 0.8888 0.5661 -0.0848 15 54.0839									-						
24 2401 3 1 BA2 BG02 1.1044 0.4425 -0.0490 15 48.3967 11.6601 135.9578 0.9961 0.2409 24 2401 3 2 TP BG55 1.3128 0.5367 -0.4288 15 55.4645 13.6206 185.5200 0.9959 0.2456 24 2805 2 1 BA* BG** 0.8228 0.5139 -0.1333 15 41.6713 3.4960 12.2221 0.9994 0.0839 24 5807 2 1 BA* BG** 0.8824 0.5890 -0.2614 15 49.5448 7.9898 63.8367 0.9976 0.1613 24 5807 2 2 BA5 BG05 0.8888 0.5661 -0.0848 15 54.0839 8.5424 72.9731 0.9976 0.1579 25 1002 1 2 TP BS55 0.7155 0.6381 -0.8656 15 14.1209			2												
24 2401 3 2 TP BG55 1.3128 0.5367 -0.4288 15 55.4645 13.6206 185.5200 0.9959 0.2456 24 2805 2 1 BA* BG** 0.8228 0.5139 -0.1333 15 41.6713 3.4960 12.2221 0.9994 0.0839 24 5807 2 1 BA* BG** 0.8824 0.5890 -0.2614 15 49.5448 7.9898 63.8367 0.9976 0.1613 24 5807 2 2 BA5 BG05 0.8888 0.5661 -0.0848 15 54.0839 8.5424 72.9731 0.9976 0.1579 25 1002 1 2 TP BS55 0.7155 0.6381 -0.8656 15 14.1209 3.4568 11.9492 0.9978 0.2448 25 1004 1 1 BA3 BS03 0.6026 0.6496 0.0000 14 15.8268 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
24 2805 2 1 BA* BG** 0.8228 0.5139 -0.1333 15 41.6713 3.4960 12.2221 0.9994 0.0839 24 5807 2 1 BA* BG** 0.8824 0.5890 -0.2614 15 49.5448 7.9898 63.8367 0.9976 0.1613 24 5807 2 2 BA5 BG05 0.8888 0.5661 -0.0848 15 54.0839 8.5424 72.9731 0.9976 0.1579 25 1002 1 2 TP BS55 0.7155 0.6381 -0.8656 15 14.1209 3.4568 11.9492 0.9978 0.2448 25 1004 1 1 BA3 BS03 0.6026 0.6496 0.0000 14 15.8268 4.9782 24.7828 0.9953 0.3145 26 0120 1 2 B1 BS01 1.4818 0.3113 -2.9054 13 18.9804		2401		2								•			
24 5807 2 1 BA* BG** 0.8824 0.5890 -0.2614 15 49.5448 7.9898 63.8367 0.9976 0.1613 24 5807 2 2 BA5 BG05 0.8888 0.5661 -0.0848 15 54.0839 8.5424 72.9731 0.9976 0.1579 25 1002 1 2 TP BS55 0.7155 0.6381 -0.8656 15 14.1209 3.4568 11.9492 0.9978 0.2448 25 1004 1 1 BA3 BS03 0.6026 0.6496 0.0000 14 15.8268 4.9782 24.7828 0.9953 0.3145 26 0120 1 2 B1 BS01 1.4818 0.3113 -2.9054 13 18.9804 1.3988 1.9567 0.9998 0.0737 26 0121 2 1 B9 BG01 1.0702 0.7188 -0.0101 14 94.1332 18	24	2805	2				0.8228								
24 5807 2 2 BA5 BG05 0.8888 0.5661 -0.0848 15 54.0839 8.5424 72.9731 0.9976 0.1579 25 1002 1 2 TP BS55 0.7155 0.6381 -0.8656 15 14.1209 3.4568 11.9492 0.9978 0.2448 25 1004 1 1 BA3 BS03 0.6026 0.6496 0.0000 14 15.8268 4.9782 24.7828 0.9953 0.3145 26 0120 1 2 B1 BS01 1.4818 0.3113 -2.9054 13 18.9804 1.3988 1.9567 0.9998 0.0737 26 0121 2 1 B9 BG01 1.0702 0.7188 -0.0101 14 94.1332 18.6328 347.1815 0.9945 0.1979 26 0122 1 1 B4 BS04 1.4366 0.2674 -1.4395 15 12.6822 1	24	5807	2	1											
25 1002 1 2 TP BS55 0.7155 0.6381 -0.8656 15 14.1209 3.4568 11.9492 0.9978 0.2448 25 1004 1 1 BA3 BS03 0.6026 0.6496 0.0000 14 15.8268 4.9782 24.7828 0.9953 0.3145 26 0120 1 2 B1 BS01 1.4818 0.3113 -2.9054 13 18.9804 1.3988 1.9567 0.9998 0.0737 26 0121 2 1 B9 BG01 1.0702 0.7188 -0.0101 14 94.1332 18.6328 347.1815 0.9945 0.1979 26 0122 1 1 B4 BS04 1.4366 0.2674 -1.4395 15 12.6822 1.5319 2.3466 0.9998 0.1208	24	5807		2	BA5	BG05									
25 1004 1 1 BA3 BS03 0.6026 0.6496 0.0000 14 15.8268 4.9782 24.7828 0.9953 0.3145 26 0120 1 2 B1 BS01 1.4818 0.3113 -2.9054 13 18.9804 1.3988 1.9567 0.9998 0.0737 26 0121 2 1 B9 BG01 1.0702 0.7188 -0.0101 14 94.1332 18.6328 347.1815 0.9945 0.1979 26 0122 1 1 B4 BS04 1.4366 0.2674 -1.4395 15 12.6822 1.5319 2.3466 0.9998 0.1208															
26 0120 1 2 B1 BS01 1.4818 0.3113 -2.9054 13 18.9804 1.3988 1.9567 0.9998 0.0737 26 0121 2 1 B9 BG01 1.0702 0.7188 -0.0101 14 94.1332 18.6328 347.1815 0.9945 0.1979 26 0122 1 1 B4 BS04 1.4366 0.2674 -1.4395 15 12.6822 1.5319 2.3466 0.9998 0.1208			1	1	ВАЗ										
26 0121 2 1 B9 BG01 1.0702 0.7188 -0.0101 14 94.1332 18.6328 347.1815 0.9945 0.1979 26 0122 1 1 B4 BS04 1.4366 0.2674 -1.4395 15 12.6822 1.5319 2.3466 0.9998 0.1208	26	0120	_1	2											
26 0122 1 1 B4 BS04 1.4366 0.2674 -1.4395 15 12.6822 1.5319 2.3466 0.9998 0.1208															
				1											
	26	0218	1	2	В6	BS06	1.4717	0.2640	-1.5980	15	13.6706	2.1813	4.7582	0.9997	0.1596

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

State Code	SHRP	Layer No.	Test No.	Loc. No.	Sample No.	k1	k2	k3	No. Points	Std Dev(M _R)	RMSE	MSE	R²	S _e /S _v
26	0219	1	1	B7	BS07	1.3374	0.3864	-2.0730	13	16.3868	1.8866	3.5591	0.9997	0.1151
26	0219	2	2	B14	BG14	1.4301	0.3172	-2.8978	15	18.5673	1.8217	3.3184	0.9997	0.0981
26	0220	1	1	B 3	BS03	1.3238	0.2598	-3.4381	14	18.7605	1.3376	1.7890	0.9998	0.0713
26	0222	1	2	B5	BS05	1.0187	0.4008	-4.7503	14	16.9487	2.5285	6.3933	0.9981	0.1492
26	0224	1	2	B2	BS02	1.1615	0.2411	-3.9661	15	17.3543	1.8745	3.5138	0.9993	0.1080
26	0224	2	2	B 9	BG09	1.4414	0.3682	-2.1885	14	14.3291	0.8665	0.7509	0.9999	0.0605
26	1001	1	1	BA*	BS**	0.7635	0.6178	-0.6505	15	15.6683	5.5531	30.8369	0.9952	0.3544
26	1001	2	1	BA*	BG**	1.2137	0.5162	0.0000	15	68.2490	8.0786	65.2642	0.9988	0.1184
26	1001	2	2	TP*	BG**	0.9975	0.6751	-0.0387	15	84.1689	3.2104	10.3066	0.9998	0.0381
26	1004	1	1	BA*	BS**	0.9051	0.6812	-1.0068	14	18.9593	4.0895	16.7237	0.9980	0.2157
26	1004	11	2	TP*	BS**	0.8749	0.6533	-0.9488	15	18.2227	6.8059	46.3206	0.9941	0.3735
26	1004	2	2	TP*	BG**	0.6441	0.7193	-0.0274	15	61.1261	3.4596	11.9692	0.9995	0.0566
26	1010	1	1	BA*	BS**	0.2186	0.7104	0.0000	15	7.3937	4.4017	19.3749	0.9726	0.5953
26	1010	1	2	TP*	BS**	0.2849	0.1893	-0.9044	15	4.5930	4.2497	18.0598	0.9752	0.9253
26	1010	2	1	BA*	BG**	0.6960	0.6713	-0.1122	15	54.7890	2.8313	8.0163	0.9997	0.0517
26	1010	2	2	TP*	BG**	0.5464	0.8224	-0.4050	13	46.1708	2.4887	6.1938	0.9996	0.0539
26	1010	3	1	BA*	BG**	1.0904	0.5005	0.0000	15	58.7963	5.2456	27.5165	0.9993	0.0892
26	1010	3	2	TP*	BG**	0.8491	0.7005	0.0000	15	78.0328	5.7623	33.2042	0.9992	0.0738
26	1012	1	1	BA*	BS**	0.7369	0.7053	-0.7929	15	16.5840	4.7026	22.1141	0.9963	0.2836
26	1012	1 .	2	A2	TS04	1.2862	0.1626	-1.5326	15	10.3473	0.7875	0.6201	0.9999	0.0761
26	1012	2	1	BA*	BG**	0.7927	0.5511	-0.1813	15	42.9293	6.8693	47.1871	0.9978	0.1600
26	1012	2	2	TP*	BG**	0.6790	0.8114	-0.4863	15	57.6894	6.7627	45.7343	0.9981	0.1172
.26	1012	3	2	TP*	BG**	0.8505	0.6235	-0.2292	15	54.2979	6.9024	47.6425	0.9983	0.1271
26	1013	1	1	BA*	BS**	0.7225	0.7486	-0.6051	15	17.5857	1.6345	2.6716	0.9996	0.0929
26	1013	2	1	BA*	BG**	0.5853	0.7240	-0.1627	15	50.5296	5.9401	35.2853	0.9981	0.1176
26	1013	2	2	TP⁺	BG**	0.6525	0.6243	-0.0706	15	46.6640	5.2572	27.6385	0.9986	0.1127
26	1013	3	1	BA*	BG**	0.5752	0.6509	0.0000	15	46.6444	7.1070	50.5094	0.9970	0.1524
26	1013	3	2	TP*	BG**	0.6082	0.7773	-0.2590	15	55.6492	4.4721	19.9998	0.9991	0.0804
26	3069	1	1	BA*	BS**	0.7556	0.7524	-0.6701	14	18.7552	1.8128	3.2862	0.9995	0.0967
26	3069	1	2	TP*	BS**	0.7152	0.7789	-0.7880	13	16.3911	1.1601	1.3459	0.9998	0.0708
26	4015	1	1	BA*	BS**	1.2632	0.3423	-3.0715	15	17.2530	3.4649	12.0054	0.9985	0.2008
26	4015	1	2	TP*	BS**	1.0766	0.4109	-3.9369	15	16.3745	1.6421	2.6964	0.9994	0.1003
26	4015	2	1	BA*	BG**	0.6861	0.6778	-0.0540	15	57.0374	5.6369	31.7743	0.9987	0.0988
26	4015	2	2	TP*	BG**	0.9150	0.5608	-0.0688	15	55.2729	5.8685	34.4389	0.9989	0.1062
26	5363	2	1	BA*	BG**	0.9378	0.4957	0.0000	15	49.7299	4.4243	19.5743	0.9993	0.0890
26	5363	2	2	TP*	BG**	0.7150	0.6980	-0.0108	15	64.8101	3.5763	12.7899	0.9996	0.0552
26	5363	. 3	1	BA*	BG**	0.8545	0.6235	-0.1165	15	58.9102	8.5503	73.1082	0.9977	0.1451
26	5363	3	2	TP*	BG**	0.5204	0.6969	0.0000	15	47.1990	6.1308	37.5861	0.9976	0.1299
26	6016	1	1	BA*	BS**	0.6990	0.6532	-0.5370	15	14.8837	2.0780	4.3179	0.9992	0.1396
26	6016	2	2	TP*	BG**	1.2267	0.4050	-0.0344	15	47.4821	9.3367	87.1732	0.9978	0.1966
26	6016	2	1	BA*	BG**	0.7111	0.7467	-0.3196	15	58.7317	2.7828	7.7439	0.9997	0.0474
26	6016	3	1	BA*	BG**	0.6625	0.6839	-0.1188	15	53.2955	7.4471	55.4593	0.9975	0.1397
26	6016	3	2	TP*	BG**	0.7712	0.7104	-0.1748	14	59.9572	3.6474	13.3032	0.9995	0.0608
26	7072	1	. 1	BA*	BS**	0.6671	0.8126	-1.0981	14	15.5712	1.8731	3.5084	0.9992	0.1203
26	7072	1	2	TP*	BS**	2.3352	0.2824	-0.8111	14	18.2108	1.3008	1.6921	1.0000	0.0714
26	7072	2	1	BA*	BG**	0.7257	0.7702	-0.3289	15	62.3880	4.9261	24.2666	0.9991	0.0790
26	7072	2	2	TP*	BG**	0.5510	0.8236	-0.0397	15	65.5310	5.3964	29.1217	0.9988	0.0824
26	7072	3	1	BA*	BG**	1.3205	0.4923	0.0000	15	69.2262	9.2379	85.3392	0.9985	0.1334
26	7072	3	2	TP*	BG**	0.8766	0.7457	0.0000	15	89.4937	7.4010	54.7755	0.9989	0.0827
26	9029	2	1	BA*	BG**	0.5808	0.7716	-0.2813	15	51.7133	3.0769	9.4670	0.9995	0.0595
26	9029	3	1	BA*	BG™	0.7054	0.6211	0.0000	15	52.7891	6.2922	39.5924	0.9983	0.1192
26	9029	3	2	BA*	BG**	0.7859	0.5949	0.0000	15	55.0050	6.3423	40.2248	0.9985	0.1153
27	1016	1	1	BA*	BS**	0.7571	0.6718	-0.7353	15	15.7782	1.5184	2.3057	0.9996	0.0962
27	1016	1	2	TP*	BS**	0.6648	0.7455	-0.7598	15	15.4873	1.7236	2.9706	0.9994	0.1113
27	1016	2	1	BA*	BG**	0.7940	0.6779	0.0000	15	68.8309	5.3381	28.4953	0.9992	0.0776
27	1016	2	2	TP⁺	BG**	0.6633	0.6964	0.0000	15	60.3926	3.9359	15.4914	0.9994	0.0652

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

	OURS		Total	les	Committee	1			N-					
State	SHRP	Layer No.	Test No.	Loc. No.	Sample No.	k1	k2	k3	No. Points	Std Dev(M _R)	RMSE	MSE	R²	S _e /S _v
27	1018	1	1	BA*	BS**	0.7145	0.6922	-0.7367	15	15.3431	1.6328	2.6662	0.9995	0.1064
27	1018	1	2	TP*	BS**	0.5661	0.8358	-0.8654	15	14.7254	1.3619	1.8547	0.9995	0.0925
27	1018	2	1	BA*	BG**	0.7521	0.6316	-0.2637	15	47.3867	7.7311	59.7703	0.9973	0.1632
27	1018	2	2	TP*	BG**	0.4830	0.8376	-0.3472	14	45.5099	4.0817	16.6607	0.9987	0.0897
27	1019	2	1	BA*	BG**	0.7410	0.6698	-0.0688	15	60.1734	3.5661	12.7168	0.9995	0.0593
27	1019	2	2	TP*	BG**	0.9804	0.5447	0.0000	15	59.7106	7.0383	49.5374	0.9987	0.1179
27	1028	1	1	BA*	BS**	0.7300	0.7753	-1.1021	15	16.7724	2.1937	4.8124	0.9991	0.1308
27	1028	1	2	TP*	BS**	0.7891	0.8533	-1.4552	15	18.7266	2.1106	4.4548	0.9993	0.1127
27	1029	1	1	BA*	BS**	0.7796	0.5804	-1.1021	15	12.9773	2.0276	4.1110	0.9993	0.1562
27	1029	1	2	TP*	BS**	0.7419	0.6791	-0.9346	15	15.0403	1.8658	3.4814	0.9994	0.1241
27	1085	1	1	BA*	BS**	1.7532	0.2988	-2.2666	15	19.7383	2.2788	5.1930	0.9997	0.1155
27	1085	1	2	A2	TS03	1.5602	0.3192	-1.0676	15	14.9418	3.3932	11.5138	0.9995	0.2271
27	3003	1	1	A1	TS01	1.4477	0.2800	-1.1707	15	12.5463	2.1119	4.4602	0.9997	0.1683
27	3003	1	2	A2	TS03	1.5063	0.2453	-1.3728	15	12.5982	1.2990	1.6875	0.9999	0.1031
27	3003	2	1	BA⁺	BG**	0.8425	0.6046	-0.2097	14	48.8306	4.1211	16.9831	0.9993	0.0844
27	3003	2	2	TP*	BG**	0.5108	0.8536	-0.0885	15	63.0153	4.2206	17.8133	0.9992	0.0670
27	3013	1	2	TP*	BS**	0.6015	0.7370	-1.1199	12	12.5224	1.0219	1.0442	0.9997	0.0816
27	4033	1	1	C6	BS01	0.5412	0.7300	-1.0006	13	12.1560	1.7003	2.8911	0.9990	0.1399
27	4033	1	2	TP*	BS**	0.6682	0.7574	-1.5541	15	13.8753	2.4022	5.7707	0.9985	0.1731
27	4034	1	1	TP*	BS**	0.7241	0.6873	-0.7904	. 15	15.0627	1.7392	3.0247	0.9995	0.1155
27	4034	_1_	2	TP*	BS**	0.6477	0.5919	-0.9236	15	11.6202	2.5074	6.2868	0.9985	0.2158
27	4034	2	1	TP*	BG**	0.7621	0.6335	-0.0142	15	58.7706	4.4924	20.1821	0.9993	0.0764
27	4034	2	1	TP*	BG** BS01	0.6644	0.7182	-0.0591	15	60.9059	6.7047	44.9524	0.9983	0.1101
27	4037 4037	1	2	C6 TP*	BS**	0.8953	0.6661	-1.5409	15	16.1770	2.9636	8.7830	0.9987	0.1832
27	4037	2	2	TP*	BG**	0.4114 0.9164	0.7488 0.6053	0.0000	15 15	11.9312 66.4647	1.6108 5.3933	2.5947 29.0877	0.9990	0.1350
27	4040	1	1	A1	TS01	0.9116	0.1902	-2.5367	15	10.5348	0.8562	0.7330	0.9992	0.0811 0.0813
27	4040	1	2	A2	TS03	0.8461	0.1965	-3.2454	15	11.3921	1.2857	1.6531	0.9995	0.1129
27	4040	2	1	BA*	BG**	0.4578	0.8095	-0.0486	15	52.3923	4.5158	20.3924	0.9987	0.0862
27	4040	2	2	TP*	BG**	0.5690	0.7350	-0.0515	15	54.5549	5.2740	27.8148	0.9986	0.0967
27	4054	1	1	BA*	BS**	0.6709	0.7337	-0.9679	15	14.7367	1.7097	2.9232	0.9994	0.1160
27	4054	1	2	BA*	BS**	0.7898	0.8614	-1.4658	14	17.7177	1.6678	2.7817	0.9996	0.0941
27	4054	2	1	BA*	BG**	1.0646	0.5307	0.0000	15	62.4086	6.8673	47.1599	0.9989	0.1100
27	4054	2	2	BA*	BG**	0.7552	0.6763	0.0000	15	64.9811	7.9268	62.8338	0.9980	0.1220
27	4055	1	1	BA*	BS**	0.8370	0.6106	-1.0765	15	14.8269	2.7212	7.4048	0.9989	0.1835
27	4055	1	2	TP*	BS**	0.6854	0.5817	-0.8830	15	11.9929	2.2371	5.0048	0.9989	0.1865
27	4055	2	2	TP*	BG**	0.6695	0.7695	-0.2960	15	58.3902	7.7278	59.7194	0.9976	0.1323
27	4082	1	1	A1	TS01	0.9684	0.2068	-2.6811	15	11.5540	1.1560	1.3364	0.9997	0.1001
27	4082	1	2	TP*	BS**	0.3577	0.9497	-1.4417	14	10.0952	5.0992	26.0017	0.9814	0.5051
27	5076	1	1	BA*	BS**	1.1417	0.3884	-2.1105	15	13.7096	2.4614	6.0586	0.9993	0.1795
27	5076	1	2	BA*	BS**	1.3797	0.2945	-1.8713	15	14.0601	1.3203	1.7431	0.9999	0.0939
27	5076	2	1	BA*	BG**	0.7697	0.5864	-0.0996	15	48.7001	6.3801	40.7062	0.9983	
27	5076	2	2	BA*	BG**	0.3297	0.9073	-0.1510	15	43.6744	4.0163	16.1309	0.9984	0.0920
27	6251	1	1	BA⁺	BS**	0.7261	0.6619	-0.8628	15	14.4888	1.7593	3.0952	0.9994	0.1214
27	6251	1	2	TP*	BS**	0.6138	0.8872	-1.7640	15	14.5455	1.8369	3.3740	0.9990	0.1263
27	6251	2	2	TP*	BG**	0.7751	0.6919	0.0000	15	70.1171	4.1232	17.0004	0.9995	0.0588
27	6300	1	1	A1	TS01	1.1684	0.2273	-3.1249	15	15.4081	1.7242	2.9730	0.9995	0.1119
27	6300 7090	1	2	TP*	BS**	1.4667 0.6077	0.3651	-2.4260 -3.8486	15	17.8144	2.3072	5.3234	0.9996	0.1295
27 27	7090	2	1	BA*	BG**	0.6938	0.3404 0.5582	-3.8486 -0.0688	15 15	9.0333 41.7675	1.6799 5.5503	2.8222 30.8056	0.9981	0.1860 0.1329
27	7090	2	2	TP*	BG**	0.6936	0.6393	-0.2359	15	47.8012	4.7170	22.2499	0.9989	0.1329
27	7090	3	1	BA*	BG**	0.6122	0.6561	-0.5419	14	31.8438	4.4535	19.8337	0.9985	0.0987
27	7090	3	2	TP*	BG**	0.4889	0.7558	-0.3140	15	40.9719	7.1768	51.5069	0.9958	0.1359
27	9075	1	1	BA*	BS**	0.8421	0.2536	-0.8485	15	6.3636	0.7034	0.4947	0.9999	0.1105
27	9075	1	2	BA*	BS**	1.1881	0.2096	-1.2414	15	8.8678	0.6159	0.3793	1.0000	0.0695
28	0501	1	1	A1	TS01	0.4296	0.7504	-0.4600	15	10.9965	1.7604	3.0991	0.9987	0.1601

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

			T- 7	· ·										
State	SHRP	Layer	Test	Loc.	Sample	1.4	امرا	1.0	No.	Std	RMSE	MSE	R²	
Code	ID	No.	No.	No.	No.	k1	k2	k3	Points	Dev(M _R)				S ₄ /S _y
28	0501	1	2	A2	TS04	0.2136	0.4305	-1.7715	15	2.9488	1.3894	1.9306	0.9943	0.4712
28	0503	_1_	1	A7	TS01	0.5346	0.5908	0.0000	15	12.8612	4.6447	21.5732	0.9945	0.3611
28	0504	1	2	BA*	BS**	1.3927	0.1484	-1.3025	15	10.1278	2.0865	4.3534	0.9997	0.2060
28	0506	1	1	A5	TS01	0.5916	0.5060	-1.2199	15	8.4808	2.1701	4.7095	0.9985	0.2559
28	0507	1	1	A3	TS01	1.1560	0.6145	-0.7763	15	21.9812	6.6461	44.1702	0.9969	0.3024
28	0508	1	1	A8	TS01	0.6763	0.5245	-3.0140	15	10.1980	2.5687	6.5980	0.9973	0.2519
28	0508	1	2	A9	TS03	0.6411	0.1921	-0.2812	15	4.7929	2.7593	7.6139	0.9983	0.5757
28	0509	1	1	A6	TS01	0.9214	0.3365	-4.0909	15	13.5794	2.9234	8.5465	0.9975	0.2153
28	1001	1	1	A1	TS01	0.4830	0.4098	-4 .9710	15	7.4909	1.7125	2.9327	0.9961	0.2286
28	1001	1	2	A2	TS03	0.6843	0.0033	-3.7063	15	10.3694	2.0291	4.1173	0.9977	0.1957
28	1001	2	1	BA*	BG**	1.2394	0.4378	-0.3516	15	40.4610	11.0430	121.9489	0.9964	0.2729
28	1001	2	2	BA4	BG**	0.6769	0.7374	-0.2764	15	55.9691	4.4790	20.0615	0.9991	0.0800
28	1016	1	1	A1	TS01	0.5635	0.8344	-1.4185	15	15.1789	5.8728	34.4901	0.9887	0.3869
28	1016	1	2	A2	TS03	0.9632	0.4011	-1.9807	15	14.5104	8.4931	72.1324	0.9887	0.5853
28	1016	2	1	BA*	BG**	0.7199	0.6171	-0.1429	15	48.1306	4.3071	18.5509	0.9991	0.0895
28	1016	2	2	TP1	BG55	0.7488	0.5864	-0.1679	15	45.5534	2.7471	7.5464	0.9996	0.0603
28	1802	1	1	BA*	BS**	0.8968	0.3915	-0.4663	15	11.5882	3.4637	11.9969	0.9986	0.2989
28	1802	1	2	A2	TS03	0.7525	0.3040	-0.0600	15	9.2941	4.4133	19.4774	0.9971	0.4749
28	1802	2	1	BA*	BG**	1.2030	0.4672	-0.1977	15	49.0857	7.2767	52.9502	0.9986	0.1482
28	1802	2	2	TP1	BG55	0.9001	0.6394	-0.1210	15	65.0943	6.6476	44.1907	0.9988	0.1021
28	2807	1	1	A1	TS01	0.3856	0.6519	-3.2137	15	6.5407	1.7095	2.9225	0.9964	0.2614
28	2807	1	2	A2	TS03	0.9370	0.2147	-2.8659	15	11.2559	1.9621	3.8497	0.9992	0.1743
28	3018	1	1	A1	TS01	0.7536	0.4199	-1,3997	15	9.0963	2.0228	4.0918	0.9991	0.2224
28	3018	1	2	A2	T\$03	0.9323	0.2198	-1.7576	15	9.8522	4.9390	24.3937	0.9959	0.5013
28	3081	1	1	A1	TS01	0.7610	0.1258	-1.0848	15	7.3569	5.7537	33.1050	0.9931	0.7821
28	3081	1	2	A2	TS03	0.7022	0.5815	-1.3703	15	11.4155	1.8482	3.4158	0.9992	0.1619
28	3082	1	1	A1	TS01	0.9479	0.5542	0.0000	15	19.7653	2.3317	5.4368	0.9995	0.1180
28	3082	1	2	A2	TS03	0.8337	0.4984	0.0000	15	16.2211	5.4201	29.3771	0.9967	0.3341
28	3083	1	1	A1	TS01	0.6474	0.4511	0.0000	15	11.0247	2.2784	5.1912	0.9990	0.2067
28	3083	1	2	A2	TS03	0.6062	0.5550	-0.1346	15	12.3327	1.5799	2.4960	0.9995	0.1281
28	3085	1	1	BA*	BS**	1.4489	0.3330	-0.1346	15	10.5546	3.7374	13.9683	0.9992	0.3541
28	3087	1	1	BA3	BS03	0.8903		-0.9120	14	17.5893	2.3582	5.5609	0.9993	0.3341
		1	2				0.6372		13					
28	3087			BA*	BS**	0.7258	0.3482	0.0000		10.4311	2.9281	8.5736	0.9987	0.2807
28	3089	1	1	A1	TS01	0.7743	0.4456	-2.3509	15	10.3427	2.4650	6.0764	0.9984	0.2383
28	3089	1.	2	A2	TS03	0.7370	0.3363	-0.9617	15	8.6839	4.9681	24.6817	0.9950	0.5721
28	3090	1	1	A1	TS01	0.6065	0.2834	-1.8594	15	8.2271	5.3669	28.8039	0.9885	0.6523
28	3090	1	2	A2	TS02	0.7514	0.4839	-2.0114	15	10.2794	2.3089	5.3308	0.9986	0.2246
28	3090	2	1	BA*	BG**	0.9484	0.5388	0.0000	15	58.3285	9.8922	97.8550	0.9972	0.1696
28	3090	2	2	BA*	BG**	1.2587	0.6058	-0.4254	15	65.0352	10.5074	110.4063	0.9978	0.1616
28	3090	3	1	BA*	BG**	0.7073	0.9193	-0.0673	15	106.5282	7.6451	58.4479	0.9989	0.0718
28	3090	3	2	BA*	BG**	0.8222	0.6158	0.0000	15	81.5996	56.1786		0.9075	0.6885
28	3091	_1_	1	A1	TS01	0.9539			15	13.7137	6.0720		0.9960	0.4428
28	3091	1	2	A2	TS03	0.6823	0.4351	0.0000		11.8952	2.9579		0.9985	0.2487
28	3093	1	1	BS*	BS**	0.7523	0.5735			14.3968	1.9019		0.9995	0.1321
28	3093	1 .	2	BA*	BS**	0.8434	0.3937	-0.8469	15	10.2153	3.1608	9.9909	0.9985	0.3094
28	3094	1	1	A1	TS01	1.5502	0.6160	-4.2283	15	27.2839	9.6517	93.1548	0.9905	0.3538
28	3094	1	2	A2	TS02	0.7404	0.4200	0.0000	15	12.8719	5.7306	32.8400	0.9953	0.4452
28	3097	1	1	A1	TS01	0.5048	0.0000	-0.0175	15	9.3960	9.3958	88.2817	0.9693	1.0000
28	3097	1	2	A2	TS03	0.5593	0.6087	-3.1221	15	9.0685	1.9423	3.7724	0.9978	0.2142
28	3097	3	1	BA*	BG**	0.9806	0.7369	-0.2088	15	86.7918	8.8876	78.9887	0.9985	0.1024
28	3097	3	2	BA*	BG**	0.9068	0.7638	-0.1300	15	91.3346	7.5634	57.2049	0.9989	0.0828
28	3099	1	1	A1	TS01	0.5174	0.1286	-0.4072	15	3.9182	3.2914	10.8335	0.9960	0.8400
28	3099	1	2	A2	TS03	0.5807	0.2052	-2.6455	15	7.3937	3.0364	9.2196	0.9949	0.4107
28	4024	1	1	BA*	BS**	0.7762	0.1760	0.0000	15	9.6051	8.2256	67.6604	0.9904	0.8564
28	4024	1	2	A2	TS03	0.5100	0.3021	-2.2208	15	6.0765	2.2798	5.1975	0.9967	0.3752
28	5006	1	1	_A1	TS01	1.0949	0.2238	-2.6408	15	12.9780	3.0408	9.2464	0.9986	0.2343

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

				f						 1				
State Code	SHRP	Layer No.	Test No.	Loc. No.	Sample No.	k1	k2	k3	No. Points	Std Dev(M _R)	RMSE	MSE	R²	S _a /S _v
28	5006	1	2	A2	TS03	0.8565	0.2252	-3.6845	15	11.8816	2.4900	6.2003	0.9980	0.2096
28	5025	1	1	BA*	BS**	0.9304	0.4181	-0.5371	15	12.6144	3.1695	10.0460	0.9989	0.2513
28	5025	1	2	BA*	BS**	0.9196	0.2927	-0.5659	15	8.9272	3.9180	15.3509	0.9982	0.4389
28	5025	2	1	BA*	BG**	1.2468	0.5861	0.0000	15	87.0926	6.7758	45.9121	0.9993	0.0778
28	5025	2	2	BA*	BG**	1.1200	0.6862	-0.1840	15	88.7097	9.4346	89.0116	0.9985	0.1064
28	5803	1	2	BA*	BS**	0.7222	0.3697	0.0000	15	11.3984	5.4634	29.8484	0.9954	0.4793
28	5805	1	1	BA*	BS**	0.6256	0.5485	0.0000	15	13.5636	4.3057	18.5387	0.9965	0.3174
28	5805	1	2	BA*	BS**	0.8535	0.2995	-1.7143	15	9.4375	4.0607	16.4892	0.9968	0.4303
28	5805	2	1	BA*	BG**	0.7525	0.6732	-0.2135	15	55.6776	3.6392	13.2441	0.9995	0.0654
28	5805	2	2	BA*	BG**	0.6319	0.7589	-0.2775	15	55.0203	3.4368	11.8119	0.9995	0.0625
28	7012	1	1	BA2	BS02	0.9665	0.3616	-1.6515	15	10.7051	2.7175	7.3847	0.9989	0.2538
28	7012	1	2	A2	TS03	0.4493	0.4766	0.0000	15	8.6674	3.8543	14.8555	0.9944	0.4447
28	7012	2	1	BA*	BG**	0.7754	0.5459	0.0000	15	48.1845	6.9962	48.9466	0.9979	0.1452
28	7012	2	2	BA*	BG**	0.6465	0.5989	0.0000	15	46.2632	3.2678	10.6787	0.9994	0.0706
28	7012	3	1	BA*	BG**	1.0775	0.6422	-0.1267	15	79.6098	8.1694	66.7398	0.9987	0.1026
28	7012	3	2	BA*	BG**	0.6694	0.5714	-0.0622	15	42.1163	5.1458	26.4788	0.9985	0.1222
28	9030	1	1	A1	TS01	0.5855	0.5830	-1.6244	15	9.6100	3.0490	9.2965	0.9966	0.3173
28	9030	1	2	A2	TS03	0.9572	1.0500	-2.5503	15	25.9545	11.6392	135.4719	0.9807	0.4484
29	0603	1	2	TP7	BS07	0.7049	0.4336	-2.0065	15	8.8544	1.9018	3.6168	0.9989	0.2148
29	0605	1	2	TP5	BS05	1.1613	0.1806	-1.9226	15	11.1343	1.4382	2.0683	0.9998	0.1292
29	0607	1	2	TP1	BS01	1.2712	0.1479	-1.2551	15	8.9719	1.7118	2.9304	0.9998	0.1908
29	0608	1	2	TP3	BS03	0.9406	0.1876	-1.5575	15	7.7907	1.0183	1.0369	0.9998	0.1307
29	0608	2	2	TP3	BG03	0.8897	0.4855	0.0000	14	45.7283	16.6274	276.4708	0.9888	0.3636
29	1002	1	1	BA*	BS**	2.2555	0.3205	-1.0017	13	19.8262	2.5669	6.5889	0.9998	0.1295
29	1002	2	1	BA*	BG**	0.6787	0.7076	0.0000	15	63.1432	7.7860	60.6218	0.9978	0.1233
29	1002	2	2	TP*	BG**	0.6757	0.6406	0.0000	15	53.1658	6.9456	48.2409	0.9979	0.1306
29	1005	2	1	BA*	BG**	0.8208	0.6707	0.0000	15	69.5521	7.4657	55.7371	0.9985	0.1073
29	1005	2	2	TP*	BG**	0.6483	0.8938	-0.0367	15	90.5061	8.1123	65.8088	0.9984	0.0896
29	1008	1	1	A1	TS02	1.2151	0.4634	-3.2285	15	17.8213	2.9713	8.8286	0.9988	0.1667
29	1008	1	2	A2	TS04	1.3415	0.2402	-2.4097	15	15.2300	1.5926	2.5363	0.9998	0.1046
29	1008	2	1	BA*	BG**	1.3623	0.4655	0.0000	15	66.4470	16.0703	258.2561	0.9956	0.2419
29	1010	1	1	BA*	BS**	2.3257	0.3104	-0.4505	13	24.1425	5.5821	31.1604	0.9994	0.2312
29	1010	2	2	TP*	BG**	0.6512	0.7504	0.0000	15	67.2327	7.9067	62.5153	0.9979	0.1176
29	4036	_1_	1	A1	TS01	1.0374	0.2343	-2.6844	15	12.4835	1.7344	3.0082	0.9995	0.1389
29	4036	1	2	BA*	BS**	1.3092	0.2385	-1.1929	15	10.0560	0.7493	0.5614	1.0000	0.0745
29	4036	2	1	BA*	BG**	0.8372	0.6580	0.0000	15	69.4966	5.3582	28.7099	0.9992	0.0771
29	4036	2	2	BA*	BG**	0.9379	0.6573	-0.1898	15	66.8932	4.0826	16.6680	0.9996	0.0610
29	4069	_1_	1	BA*	BS**	0.7065	0.6609	-0.4527	15	15.5970	3.0304	9.1836	0.9985	0.1943
29	4069		2	BA*	BS**	0.6859	0.8918	-0.9959	12	18.2657	3.5880	12.8736	0.9977	0.1964
29	4069	2	1	BA*	BG**	0.7332	0.6173	-0.2456	15	44.9813	6.5533	42.9457	0.9979	0.1457
29	5000	_1_	1	A1	TS01	0.9256	0.1323	-2.3526	15	10.3150	0.9680	0.9370	0.9998	0.0938
29	5000	2	1	BA*	BG**	0.8774	0.6656	-0.0273	15	72.5356	5.8178	33.8464	0.9992	0.0802
29	5000	2	2	BA*	BG**	0.8525	0.7155	0.0000	15	81.5036	5.3840	28.9875	0.9994	0.0661
29	5047	-1-1	1	BA*	BS**	0.6935	0.3517	-1.9299	15	7.7724	1.3191	1.7402	0.9995	0.1697
29	5047	-1	2	BA*	BS**	0.9456	0.3450	-2.4405	15	11.3356	1.0444	1.0907	0.9998	0.0921
29	5058	- 1	2	BA*	BS**	0.7524	0.2320	-2.9214	15	9.4557	0.9426	0.8886	0.9997	0.0997
29 29	5081 5081	1	2	A2 BA*	TS04 BS**	1.1171 0.9644	0.0606	-0.9467 -1.9737	15 15	6.0906 9.4299	0.7289 1.2547	0.5312 1.5743	0.9999	0.1197
29	5091	1		A1	TS02	0.7057	0.1864 0.1451	-3.2496	15	9.4299	1.0902	1.1884	0.9997	0.1331 0.1134
29	5091	1	2	A2	TS02	0.8396	0.1451	-2.9690	15	10.6695	1.1016	1.2135	0.9996	0.1134
29	5393	1	1	A1	TS02	1.4920	0.2024	-2.9448	15	15.0593	1.6159	2.6112	0.9998	0.1032
29	5393	2	1	BA*	BG**	0.7257	0.7392	-0.3216	15	57.9131	6.7310	45.3067	0.9982	0.1073
29	5393	2	2	TP*	BG**	0.8813	0.6496	-0.4566	15	50.5395	8.2776	68.5194	0.9974	0.1638
29	5403	1	1	ВА*	BS**	0.3236	0.8099	-1.1268	15	8.5646	3.8331	14.6930	0.9867	0.4476
29	5403	1	2	TP*	BS**	0.4875	0.8351	-1.8453	15	10.8921	2.6887	7.2290	0.9964	0.2468
29	5413	1	1	BA*	BS**	0.1583	0.6566	0.0000	14	5.6276	4.3697	19.0940	0.9506	0.7765

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

										T				
State	SHRP	Layer	Test	Loc.	Sample				No.	Std			R²	
Code	ID	No.	No.	No.	No.	k1	k2	k3	Points	Dev(M _R)	RMSE	MSE		S _e /S _v
29	5413	1	2	BA*	BS**	0.5343	0.7912	-1.9114	15	11.0121	2.1423	4.5896	0.9980	0.1945
29	6067	1 -	1	BA*	BS**	0.8896	0.7517	-3.5453	15	16.3716	4,8038	23.0761	0.9942	0.2934
29	6067	1	2	TP*	BS**	0.8678	0.7015	-3.6541	15	15.3058	4.0251	16.2016	0.9955	0.2630
29	6067	2	1	BA*	BG**	0.8021	0.7135	0.0000	15	75.9444	5.1494	26.5163	0.9993	0.0678
29	6067	2	2	TP*	BS**	0.7277	0.7680	0.0000	15	78.0581	7.4258	55.1421	0.9985	0.0951
29	7054	1	1	BA*	BS**	1.4209	0.3180	-2.1790	12	13.0802	0.7556	0.5709	1.0000	0.0578
29	7054	1	2	BA*	BS**	1.6696	0.2102	-1.3860	15	13.3442	1.5837	2.5081	0.9999	0.1187
29	7054	2	2	BA*	BG**	1.0058	0.5377	0.0000	15	60.0267	10.1294	102.6042	0.9973	0.1687
29	7073	1	1	A1	TS01	0.7707	0.3347	-5.1748	15	12.9541	1.3913	1.9359	0.9989	0.1074
29	7073	1	2	A2	TS03	1.1225	0.1654	-2.2798	15	12,1784	1.3835	1.9142	0.9997	0.1136
29	7073	3	2	BA*	BG**	1.4402	0.4837	-0.1764	15	63.3902	14.0779	198.1872	0.9966	0.2221
30		1	1	BA*	BS**	0.8632	0.1528	-0.9899	15		2.2048		0.9992	0.3894
	1001		_							5.6627		4.8611		
30	6004	1	1	BA*	BS**	0.6669	0.2432	-2.4667	15	7.7226	1.3104	1.7172	0.9993	0.1697
30	6004	1	2	TP1	BS93	0.8320	0.1334	-1.6088	15	7.1760	1.4691	2.1583	0.9996	0.2047
30	6004	2	2	TP1	BG92	0.5146	0.5290	-0.2255	15	24.9023	4.2754	18.2788	0.9977	0.1717
30	7066	1	1	BA*	BS**	0.6669	0.2432	-2.4667	15	7.7226	1.3104	1.7172	0.9993	0.1697
30	7075	1	2	TP1	BS93	0.6023	0.2563	-2.7520	15	7.4514	1.4447	2.0873	0.9989	0.1939
30	7076	2	11	BA*	BG**	0.4187	0.6012	-0.4023	15	21.7755	4.3598	19.0076	0.9966	0.2002
30	7076	2	2	TP1	BG93	0.2809	0.8542	-0.3448	15	29.2977	1.4241	2.0281	0.9996	0.0486
30	7088	1	1	BA*	BS**	0.7415	0.1513	-1.2324	15	5.4493	1.7719	3.1395	0.9993	0.3252
30	7088	1	2	TP1	BS93	0.9762	0.1447	-0.3559	15	4.9694	2.3714	5.6234	0.9994	0.4772
30	8129	1	1	BA*	BS**	1.0897	0.1394	0.0000	15	6.5625	3.5179	12.3759	0.9991	0.5361
31	0113	1	3	A17	TS33	0.9527	0.2803	-1.0314	15	7.9180	0.6568	0.4314	0.9999	0.0830
31	0115	1	3	A8	TS16	0.7421	0.4491	-2.4975	13	10,2100	1.2588	1.5846	0.9995	0.1233
31	0115	1	2	B3	BS03	0.9652	0.3697	-0.8094	15	10.5198	1.2057	1.4537	0.9998	0.1146
31	0116	1	1	B5	BS05	1.0765	0.1833	-0.8971	12	5.8672	0.6441	0.4148	1.0000	0.1098
31	0120	- i -	3	A11	TS22	0.7922	0.2468	-1.8877	15	7.7078	0.9509	0.9043	0.9998	0.1234
31	0124	1	2	B1	BS01	0.7360	0.2408	-2.7693	14	9.6077	0.7949	0.6319	0.9998	0.0827
		1	1		BS**				15		2.4041			
31	3018			BA*		0.6827	0.8523	-1.1184		17.2605		5.7798	0.9988	0.1393
31	3018	1	2	TP*	BS**	0.7840	0.8169	-1.2018	15	18.5336	2.1622	4.6752	0.9993	0.1167
31	3023	1	1	BA*	BS**	0.7441	0.7108	-0.9261	15	15.6880	1.7926	3.2133	0.9995	0.1143
31	3023	1	2	TP*	BS**	0.6779	0.7220	-0.4899	13	15.1514	1.2281	1.5081	0.9997	0.0811
31	3023	2	2	TP⁺	BG**	0.6834	0.6123	-0.1004	15	46.9521	4.2287	17.8815	0.9991	0.0901
31	3024	1	1	BA*	BS**	1.1275	0.3020	-1.5126	15	10.7282	1.6009	2.5629	0.9997	0.1492
31	3024	1	2	TP*	BS**	0.6338	0.4853	-2.8514	15	9.1610	2.0618	4.2508	0.9981	0.2251
31	3028	1	1	BA*	BS**	1.0009	0.1676	-2.2151	15	10.5388	1.1265	1.2690	0.9998	0.1069
31	3028	1	2	A2	TS03	0.9545	0.1654	-2.4789	15	11.1995	0.7506	0.5634	0.9999	0.0670
31	3033	1	- 1	BA⁺	B\$**	0.9545	0.5284	-1.7917	12	12.3469	0.9881	0.9764	0.9999	0.0800
31	3033	1	2	TP*	BS**	0.6171	0.7665	-1.1180	15	13.7834	2.8737	8.2582	0.9979	0.2085
31	4019	1	1	A1	TS01	0.9180	0.1886	-1.7982	15	8.4177	0.7255	0.5263	0.9999	0.0862
31	4019	1	2	A2	TS04	0.5789	0.2259	-3.1061	15	7.5423	0.8853	0.7837	0.9995	0.1174
31	5052	1	1	A1	TS02	1.2649	0.2288	-1.3382	15	10.1099	0.9002	0.8103	0.9999	0.0890
31	5052	1	2	TP1	BS55	0.9413	0.2472	-1.7577	15	8.8759	1.4139	1.9992	0.9997	0.1593
31	6700	1	1	BA*	B\$**	0.5489	0.4015	-2.4837	15	7.1214	1.6574	2.7470	0.9984	0.2327
31	6700	1	2	TP1	BS**	0.3902	0.4593	-2.7419	15	5.6543	1.7948	3.2212	0.9962	0.2327
					BS**									
31	6701	1	1	BA*		0.5232	1.0135	-3.1041	15	12.3211	1.9729	3.8923	0.9977	0.1601
31	6701	1	2	TP1	BS55	0.7962	0.6268	-0.6755	15	15.6783	1.5852	2.5127	0.9996	0.1011
31	6702	1	1	BA*	BS**	0.7452	0.7673	-2.3411	15	14.4677	2.5028	6.2641	0.9984	0.1730
31	6702	1	2	TP*	BS**	0.6271	0.7658	-2.2391	15	12.1624	2.3043	5.3097	0.9981	0.1895
31	7005	1	-1-1	BA*	BS**	0.5740	0.5377	-1.9149	15	8.5010	1.9488	3.7978	0.9984	0.2292
31	7005	1	2	BA*	BS**	0.6827	0.5896	-1.8517	15	10.8422	2.0928	4.3798	0.9987	0.1930
31	7005	2	1	BA*	BG**	0.7557	0.7040	-0.1716	15	61.9387	3.7489	14.0542	0.9995	0.0605
31	7005	2	2	BA*	BG**	0.6823	0.7349	-0.2183	15	58.1916	3.5337	12.4867	0.9995	0.0607
31	7017	1	_1_	BA*	BS**	1.0963	0.2533	-1.7314	15	10.3150	1.3966	1.9506	0.9998	0.1354
31	7017	1	2	TP*	BS**	0.8180	0.2451	-2.8582	15	10.2167	0.9774	0.9553	0.9997	0.0957
31	7017	2	2	TP*	BG**	0.7653	0.5134	-0.1536	15	37.8804	5.5099	30.3590	0.9983	0.1455

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

State	SHRP	Layer	Test	Loc.	Sample				No.	Std				
Code	ID	No.	No.	No.	No.	k1	k2	k3	Points	Dev(M _R)	RMSE	MSE	R²	S _e /S _v
31	7040	1	1	A1	TS02	0.6558	0.1907	-2.1733	15	6.7844	0.5449	0.2969	0.9999	0.0803
31	7040	1	2	TP1	BS**	0.6510	0.1307	-1.0998	13	4.0997	0.6884	0.4740	0.9999	0.1679
31	7040	2	1	BA*	BG**	0.7887	0.6180	-0.0098	15	58.3264	4.4061	19.4138	0.9993	0.0755
31	7040	2	2	TP*	BG**	0.8222	0.5398	-0.0242	15	48.6055	4.3531	18.9496	0.9992	0.0896
31	7050	1	1	BA*	BS**	0.6882	0.2449	-2.8732	15	8.6509	1.3074	1.7092	0.9993	0.1511
31	7050	1	2	TP*	BS**	0.7362	0.1835	-2.8416	15	9.1298	0.8446	0.7134	0.9997	0.0925
31	7050	2	2	TP*	BG**	0.5955	0.6446	-0.2215	15	40.3730	5.9077	34.9003	0.9976	0.1463
32	0101	1	2	B26	BS01	0.5965	0.7717	-1.9526	15	12.0147	2.5560	6.5330	0.9977	0.2127
32	0105	1	2	B31	BS06	0.5774	0.7375	-1.9775	15	11.2470 11.3339	2.2511	5.0675	0.9980	0.2002
32	0106	1	2	B27	BS02 BS03	1.2794 0.7370	0.2343 0.5980	-1.5824 -2.1861	15 15	11.8912	1.7717	3.1388 10.2093	0.9997 0.9972	0.1563
32	0109 0111	1	2	B28 B30	BS05	1.2431	0.3960	-1.4671	15	10.5573	3.1952 1.3104	1.7171	0.9972	0.2687
32 32	1020	1	1	BA*	BS**	0.5320	0.6989	-0.6981	15	11.7400	1.3104	1.7171	0.9995	0.1241
32	1020	1	2	TP1	BS92	0.6278	0.6056	-1.2972	15	10.7296	2.3186	5.3759	0.9985	0.1117
32	1021	1	1	BA*	BS**	0.8756	0.1361	-0.3087	15	4.2404	2.0614	4.2493	0.9995	0.4861
32	1021	1	2	TP1	BS93	0.4802	0.3284	-2.1831	15	5.5222	1.3584	1.8452	0.9987	0.4861
32	1021	2	1	BA*	BG**	0.5125	0.5064	-0.3604	15	20.9655	6.0519	36.6260	0.9946	0.2887
32	1030	1	H	BA*	BS**	1.1115	0.1956	-0.0890	15	7.9144	2.4045	5.7818	0.9996	0.3038
32	1030	1	2	TP1	BS71	1.0128	0.2753	-0.4842	15	9.0143	2.8766	8.2746	0.9992	0.3191
32	2027	1	1	BA*	BS**	0.6036	0.4453	-1.6384	15	7.8090	2.3743	5.6373	0.9980	0.3040
32	2027	1	2	TP1	BS93	0.4681	0.5335	-1.6621	15	7.0495	1.9534	3.8157	0.9978	0.2771
32	3010	1	2	BA*	BS**	0.4898	0.3852	-1.1293	15	5.3940	0.8337	0.6951	0.9997	0.1546
32	7084	2	1	BA⁺	BG**	0.6450	0.4418	-0.2098	15	23.9131	4.1919	17.5716	0.9983	0.1753
34	0503	1	2	TP2	BS56	0.7614	0.2402	-0.5386	15	6.0828	2.5897	6.7068	0.9988	0.4258
34	0505	1	2	TP1	BS55	0.5751	0.5115	-0.8372	15	8.9618	2.3731	5.6316	0.9983	0.2648
34	0505	2	2	TP1	BG55	0.9100	0.7671	-0.3020	15	79.3859	4.7504	22.5663	0.9995	0.0598
34	0801	1	2	B1	BS01	0.4990	0.6526	-0.4719	15	11.0871	3.0075	9.0452	0.9970	0.2713
34	0802	1	1	B2	BS02	0.5312	0.5392	-0.1860	15	10.1831	1.8512	3.4268	0.9990	0.1818
34	1011	1	2	TP	BS55	0.7084	0.5922	-0.6944	15	13.0464	1.9333	3.7376	0.9993	0.1482
34	1031	1	1	BA*	BS**	0.7516	0.6361	-1.0440	15	13.9755	1.9745	3.8986	0.9993	0.1413
34	1031	_1_	2	TP	BS55	0.6511	0.4797	-0.4137	15	10.4845	2.2398	5.0168	0.9990	0.2136
34	1033	1	1	BA*	BS**	0.8907	0.2220	-0.3252	13	6.3063	3.3177	11.0073	0.9987	0.5261
34	1033	1	2	TP	BS55	1.0464	0.2820	-1.2799	15	10.7814	5.5022	30.2746	0.9965	0.5103
34	4042	2	1	BA*	BG**	0.6578	0.6752	-0.1177	15	52.5478	4.1776	17.4526	0.9992	0.0795
35	0101	1	2	B1	BS01	0.8437	0.1740	0.0000	15	7.9791	5.8879	34.6669	0.9958	0.7379
35	0102	1	3	A2	TS03	0.5317	0.2421	0.0000	15	4.9971	1.7731	3.1439	0.9991	0.3548
35	0103	1	2	B2 B3	BS02 BS03	0.7778 0.7277	0.3042 0.1732	0.0000	15 15	5.6753 6.5538	3.8139 4.6474	14.5455 21.5980	0.9975 0.9965	0.6720 0.7091
35 35	0105 0106	1	3	A9	TS17	0.7277	0.1732	-1.2502	15	3.2704	1.0192	1.0388	0.9992	0.7091
35	0106	1	2	B4	BS04	0.6822	0.2334	0.0000	15	6.3042	2.3610	5.5744	0.9992	0.3745
35	0108	1	3	A11	TS21	0.4910	0.1442	-1.0136	15	3.0907	0.9621	0.9256	0.9995	0.3113
35	0109		2	B5		0.6704				3.7696	1.7358	3.0130		
35	0110	1	3	A14	TS27	0.7783	0.3229	0.0000	15	10.1957	4.3493	18.9161	0.9974	0.4266
35	0111	1	2	B6	BS06	0.6016	0.3769	-0.6062	15	7.0933	1.8948	3.5904	0.9990	
35	0112	1	3	A17	TS33	0.5187	0.2317	-0.7539	15	3.8545	1.3528	1.8300	0.9993	
35	1002	1	2	TP1	BS 55	0.9051	0.4221	-0.8276	15	11.2834	2.2779	5.1888	0.9993	
35	1002	2	2	TP1	BG55	0.9707	0.6487	-0.0935	15	73.9881	5.9341	35.2135	0.9992	0.0802
35	1003	1	1	BA*	BS**	1.2015	0.4417	-0.0646	15	19.8538	3.8564	14.8721	0.9992	0.1942
35	1003	2	1	BA*	BG**	0.7762	0.7697	-0.1357	15	78.3228	4.2805	18.3231	0.9995	0.0547
35	1003	2	2	TP1	BG55	1.3095	0.3860	0.0000	15	49.8529	12.8881	166.1037	0.9963	0.2585
35	1005	1	2	TP1	BS55	1.0627	0.2438	-1.0162	15	8.1912	1.7384	3.0222	0.9997	0.2122
35	1005	2	1_	BA*	BG**	0.7366	0.7375	0.0000	15	75.4685	8.2614	68.2504	0.9981	0.1095
35	1005	2	2	TP1	BG55	0.8802	0.6531	-0.0940	15	67.7448	5.1798	26.8300	0.9993	0.0765
35	1022	1	1	A1	TS01	0.9878	0.4068	-2.2316	15	13.5446	5.9267	35.1262	0.9943	0.4376
35	1022	1	2	A2	TS03	0.8339	0.4387	-1.8656	15	10.4348	2.3617	5.5776	0.9989	0.2263
35	1022	2	1	BA*	BG**	0.6392	0.8025	0.0000	15	77.4217	10.4941	110.1256	0.9966	0.1355

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

							,							
State Code	SHRP	Layer No.	Test No.	Loc. No.	Sample No.	k1	k2	k3	No. Points	Std	RMSE	MSE	R²	S _a /S _v
35	1022	2	2	TP1	BG55	0.7352	0.7532	0.0000	15	Dev(M _R) 78.5264	5.2192	27.2399	0.9993	0.0665
35	1112	1	1	BA*	BS**	0.7352	0.7532	0.0000	15	15.2222	4.4575	19.8690	0.9978	0.2928
35	1112	1	2	TP1	B\$55	0.8456	0.5132	-0.1217	15	15.7918	2.8769	8.2768	0.9991	0.1822
35	1112	2	1	BA*	BG**	0.9479	0.8044	-0.1217	15	76.7049	4.8738	23.7542	0.9995	0.0635
35	1112	2	2	TP1	BG55	1.0553	0.6409	-0.5854	15	54.3913	12.5249	156.8721	0.9953	0.2303
35	2006	1	1	A1	TS01	0.5038	0.6525	-0.5448	15	10.9666	1.4940	2.2320	0.9992	0.1362
35	2006	1	2	A2	T\$03	0.6805	0.6776	-1.4607	15	12.8656	2.5914	6.7151	0.9983	0.2014
35	2006	2	1	BA*	BG**	0.5394	0.7011	-0.2255	15	42.2135	3.7086	13.7537	0.9990	0.0879
35	2006	2	2	TP1	BG55	0.5955	0.6705	-0.2082	15	43.6172	3.9785	15.8286	0.9990	0.0912
35	2007	2	1	BA*	BS**	0.8077	0.3957	-1.6296	15	9.6288	2.7639	7.6391	0.9984	0.2870
35	2007	2	2	TP1	BS55	0.6662	0.4153	-1.0251	15	8.5245	3.2107	10.3085	0.9974	0.3766
35	2118	1	1	A1	TS01	0.2731	0.1298	0.0000	15	2.5598	2.1970	4.8269	0.9944	0.8583
35	2118	1	2	TP1	BS55	0.5064	0.2923	-0.2238	15	5.5136	2.4358	5.9334	0.9979	0.4418
35	2118	2	1	BA*	BG**	0.6992	0.6753	-0.2370	15	51.0614	3.8876	15.1132	0.9993	0.0761
35	2118	2	2	TP1	BG56	0.6065	0.6786	-0.1466	15	47.8181	2.3394	5.4728	0.9997	0.0489
35	2118	3	1	BA*	BG**	0.8368	0.6790	0.0000	15	74.9557	5.2642	27.7122	0.9993	0.0702
35	2118	3	2	TP1	BG55	0.9554	0.6672	-0.1183	15	75.1762	4.7487	22.5504	0.9995	0.0632
35	3010	1	1	A1	TS01	0.7204	0.4099	0.0000	15	13.4100	7.8390	51.4499	0.9907	0.5846
35	3010	1	2	A2	T\$03	0.6200	0.5703	-1.0452	15	10.6650	3.9780	15.8242	0.9957	0.3730
35	3010	2	1	BA*	BG**	0.9575	0.6966	-0.0228	15	87.5216	7.6745	58.8976	0.9989	0.0877
35	3010	2	2	BA*	BG**	0.6851	0.7610	0.0000	15	74.5450	12,4774	155.6846	0.9953	0.1674
35	6033	1	1	BA*	BS**	0.9073	0.3140	-0.8156	15	9.0543	3.4644	12.0018	0.9984	0.3826
35	6033	1	2	A2	TS03	0.7294	0.8171	-1.3477	15	17.4512	3.7982	14.4267	0.9972	0.2177
35	6033	2	1	BA*	BG**	0.6598	0.6857	0.0000	15	59.8510	8.0811	65.3044	0.9974	0.1350
35	6033	2	2	TP1	BG55	0.4777	0.7270	0.0000	15	47.3977	2.8824	8.3081	0.9994	0.0608
35	6035	1	1	A1	TS01	0.7396	0.1481	-2.0998	15	8.3569	3.8169	14.5685	0.9956	0.4567
35	6035	1	2	TP1	BS55	1.0431	0.2668	-1.5392	15	10.0157	3.3195	11.0192	0.9986	0.3314
35	6035	3	1	BA3	BG03	0.8740	0.5158	-0.0205	15	48.6443	4.9770	24.7702	0.9991	0.1023
35	6035	3	2	TP1	BG55	0.3365	0.8375	0.0000	15	43.2443	6.3093	39.8069	0.9960	0.1459
35	6401	1	1	A1	TS01	1.0291	0.5537	-2.8297	15	15.2862	3.4135	11.6521	0.9981	0.2233
35	6401	1	2	A2	TS03	0.8011	0.6618	-1.5567	15	14.1495	0.9985	0.9970	0.9998	0.0706
35	6401	3	1	BA*	BG**	0.9800	0.6441	0.0000	15	80.7271	15.9003	252.8196	0.9948	0.1970
35	6401	3	2	TP1	BG**	0.9800	0.6441	0.0000	15	80.7271	15.9003	252.8196	0.9948	0.1970
36	0801	1	2	B1	BS01	0.4623	0.5655	-0.1668	15	9.3412	1.6278	2.6499	0.9990	0.1743
36	0802	1	2	B2	BS02	0.4891	0.6660	-0.6244	15	10.5343	2.4175	5.8445	0.9979	0.2295
36	1008	1	1	BA*	BS**	0.8533	0.5917	-1.5578	15	13.8609	3.4739	12.0682	0.9980	0.2506
36	1008	1	2	TP	BS55	0.6464	0.4130	-1.2083	15	8.2883	3.4294	11.7609	0.9967	0.4138
36	1011	1	1	BA*	BS**	1.2531	0.2721	-1.8965	15	14.2170	6.1444	37.7537	0.9964	0.4322
36	1011	1	2	TP	BS55	0.3868	0.0434	-0.5088	14	5.0715	4.9699	24.6996	0.9828	0.9800
36	1644	1	1	BA*	BS**	0.7869	0.7098	-1.1339	15	16.3051	2.3951	5.7367	0.9991	0.1469
36	4018	1	1	BA*	BS**	1.2293	0.4279	-1.1935	15	15.2980	4.0828	16.6694	0.9987	0.2669
37	0201	1	3	A2	TS02	0.4533		-1.3388	15	4.9924	2.3729	5.6306	0.9966	0.4753
37	0206	1	3	A8	TS08	0.5075	0.2494	-2.1239	15	5.5917	1.6271	2.6475	0.9983	0.2910
37	0207	1	3	A11	TS11	0.3071	0.5937	-1.8885	15	4.9981	1.4187	2.0128	0.9971	0.2839
37	0210	1	3	A5	TS05	0.5609	0.2707	-0.9501	15	5.0398	2.1611	4.6702	0.9983	0.4288
37	0212	1	1	B5	BS05	0.7789	0.1193	0.0000	15	4.3337	2.6932	7.2531	0.9989	0.6214
37	0212	1	3	A14	TS14	0.4674	0.2894	-2.4036	15	5.6044	1.7037	2.9026	0.9977	0.3040
37	0801	1	2	B1	BS01	0.7232	0.6717	-0.5640	15	15.8361	2.0406	4.1641	0.9993	0.1289
37	0802	1	2	B2	BS02	0.6942	0.7289	-1.1240	15	15.0513	3.4940	12.2078	0.9975	0.2321
37	1006	1	1	BA2	BS02	0.9164	0.3319	-3.1837	15	12.7709	4.0516	16.4157	0.9960	0.3173
37	1006	1	2	TP	BS55	0.8226	0.2487	-2.5525	15	10.6225	4.7713	22.7656	0.9939	0.4492
37	1006	2	1	BA1	BG01	0.9826	0.6171	-0.1741	15	63.9775	9.1950	84.5476	0.9978	0.1437
37	1006	2	2	TP1	BG55	1.0125	0.6169	-0.1279	15	69.1116	4.5007	20.2563	0.9995	0.0651
37	1024	1	2	TP	BS55	0.3320	0.2857	-3.2671	14	4.9725	2.5609	6.5584	0.9874	0.5150
37	1024	2	1	BA*	BG**	0.7243	0.7045	-0.2415	15	56.4088	7.4521	55.5338	0.9978	0.1321
37	1028	1.	2	TP	BS55	0.5957	0.5871	0.0000	14	13.8604	2.8360	8.0429	0.9984	0.2046

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

	1		I			·	I		T			r		
State	SHRP	Layer	Test	Loc.	Sample	l, 4	<u>س</u> ا	μ ₀	No.	Std	DMCE	MOE	R²	۰
Code	ID.	No.	No.	No.	No.	k1	k2	k3	Points	Dev(M _R)	RMSE	MSE		S _e /S _y
37	1030	1	2	TP	BS55	0.5776	0.5130	0.0000	15	11.7039	4.0470	16.3786	0.9963	0.3458
37	1040	2	1	BA*	BG**	0.6688	0.6185	-0.0045	15	50.1581	5.3333	28.4436	0.9987	0.1063
37	1040	2	2	TP	BG55	0.8254	0.6915	-0.2682	15	60.5673	8.3977	70.5219	0.9977	0.1387
37	1352	1	2	TP	BS55	0.6910	0.0000	0.0000	15	6.2336	6.2335	38.8571	0.9927	1.0000
37	1801	1	2	TP	BS55	0.8054	0.2202	-2.9237	15	10.5320	3.3995	11.5569	0.9964	0.3228
37	1803	1	2	TP	BS55	0.8492	0.2879	-1.4407	15	9.1823	4.7054	22.1410	0.9960	0.5124
37	1803	2	1	BA*	BG**	0.6012	0.6739	0.0000	15	52.1425	12.4341	154.6067	0.9923	0.2385
37	1803	2	2	TP	BG55	0.7949	0.7390	-0.4169	15	59.3161	7.6911	59.1527	0.9979	0.1297
37	1817	1	1	BA*	BS**	0.9124	0.3333	-3.4651	15	13.2190	4.0068	16.0547	0.9956	0.3031
37	1817	1	2	TP	BS55	0.9654	0.1769	-2.5638	15	11.9084	4.0678	16.5471	0.9967	0.3416
37	1992	1	1	BA*	BS**	0.8120	0.2192	-0.9444	15	6.5814	3.3311	11.0965	0.9981	0.5061
37	2819	1	1	BA*	BS**	0.5632	0.2011	-2.2567	15	6.3456	1.9793	3.9177	0.9979	0.3119
37	2819	1	2	TP	BS55	0.7508	0.0614	-1.7706	15	7.5939	3.4340	11.7925	0.9968	0.4522
37	2825	1	2	TP	BS55	0.5958	0.1375	-0.2998	15	4.4379	3.6210	13.1116	0.9964	0.8159
37	3008	1	1	BA*	BS**	0.6223	0.3402	-2.8894	15	8.7603	3.6009	12.9661	0.9935	0.4110
37	3008	1	2	BA*	BS**	0.6704	0.4799	-2.2577	15	9.8624	3.8740	15.0077	0.9948	0.3928
37	3011	1	1	BA*	BS**	0.9754	0.2170	-0.4908	15	8.8436	6.0037	36.0446	0.9962	0.6789
37	3011	1	2	TP	BS55	1.2689	0.2668	-1.9342	15	13.4837	4.6206	21.3501	0.9980	0.3427
37	3044	2	1	BA*	BG**	0.7047	0.5818	-0.3382	15	36.6513	8.7532	76.6182	0.9952	0.2388
37	3044	2	2	BA*	BG**	0.8331	0.5646	-0.3174	15	41.5713	7.4481	55.4742	0.9974	0.1792
37	3807	1	1	BA*	BS**	0.7188	0.4839	-2.9830	15	11.3129	4.6917	22.0120	0.9919	0.4147
37	3807	1	2	TP	BS55	0.7263	0.4405	-3.2208	15	10.9731	3.9086	15.2769	0.9940	0.3562
37	5037	1	1	BA*	BS**	0.6293	0.3403	-2.3543	15	9.3646	5.6625	32.0642	0.9865	0.6047
37	5037	1	2	BA*	BS**	0.8095	0.1422	-2.6958	15	10.5456	4.1501	17.2232	0.9949	0.3935
37	5827	1	1	BA*	BS**	0.6703	0.4708	-2.8276	15	10.0631	3.8618	14.9137	0.9938	0.3838
37	5827	1	2	TP	BS55	0.6923	0.2928	-2.4503	15	9.2849	4.4524	19.8240	0.9928	0.4795
38	0219	1	3	A14	TS27	0.7657	0.1591	-1.6992	15	6.5843	0.5169	0.2671	0.9999	0.0785
38	0219	1	3	A14	TS28	0.5685	0.1507	-2.8057	13	6.5594	0.4256	0.1811	0.9999	0.0649
38	0221	1	3	A20	TS40	0.7199	0.1386	-1.8029	13	5.1078	0.5500	0.3025	0.9999	0.1077
38	0221	1	3	A21	TS42	0.7785	0.2271	-2.2288	15	8.2173	0.4454	0.1983	0.9999	0.0542
38	0221	3	3	B13	BG12	1.0296	0.5450	0.0000	14	59.1369	6.0983	37.1893	0.9990	0.1031
38	0223	3	3	B12	BG11	1.0719	0.6569	-0.0664	14	78.4702	4.4137	19.4806	0.9996	0.0562
38	3005	2	1	BA*	BG**	0.9006	0.3575	-0.7161	15	16.3261	6.2887	39.5482	0.9964	0.3852
38	3006	1	1	BA*	BS**	0.6977	0.6230	-3.1469	15	11.4280	2.4777	6.1392	0.9976	0.2168
38	3006	1	2	TP*	BS**	0.6985	0.5303	-2.2198	15	10.0854	1.7994	3.2379	0.9990	0.1784
38	3006	2	1	BA*	BG**	0.6527	0.6024	-0.0942	15	43.1805	6.8477	46.8905	0.9973	0.1586
38	3006	2	2	TP⁺	BG**	0.3656	0.8232	-0.0342	15	43.6899	5.1463	26.4848	0.9976	0.1388
39	0101	2	2	B16	BG16	1.3235	0.6547	0.0000	14	101.9413	9.9099	98.2065	0.9988	0.0972
39	0101	2	2	B18	BG18	1.3342	0.6330	0.0000	14	95.7167	5.3768	28.9097	0.9996	0.0572
39	0102	1	2	B2	BS02	1.5063	0.3014	-0.9646	14	12.3440	1.8809	3.5379	0.9998	0.0502
39	0107	1	1	B3	BS02	1.1437	0.3014	-2.5223	15	13.2773	1.6224	2.6320	0.9996	0.1324
39	0107	1	1	B5	BS05	1.0460	0.2559	-1.6620	15	9.7165	1.2973	1.6829	0.9998	
39	0108	2	2	B19	BG19	0.9477	0.2559	-0.0283	14	58.5248	4.9704	24.7051	0.9993	0.1335
39	0203	2	2	B23	BG23	1.3221	0.5554	-0.0263	14	76.0211	5.9199	35.0458	0.9994	0.0849
39	0203	3	1	B19	BG23	1.2464	0.5372	0.0000	14	70.0611	5.6160	35.0458	0.9994	0.0779
39	0204	2	1	B22	BG22	1.2262	0.6116	0.0000	13	78.9295	5.7591	33.1673	0.9995	0.0802
39	0210	2	1	B20	BG22	0.7285	0.8353	0.0000	14	83.3119	4.4737	20.0137	0.9995	0.0537
39	0210	1	2	B6	BS06	1.3626	0.3090	-0.2987	15	13.9226	2.9887	8.9323	0.9996	0.0537
39	0803	1	3	A4	TS07	1.8490	0.2425	-1.3345	15	15.1620	1.7963	3.2267	0.9999	0.2147
39	0804	1	3	A1	TS13	1.3505	0.2300	-1.9049	15	13.1974	1.9383	3.7568	0.9997	0.1169
39	0804	3	1	B6	BG06	1.0810	0.6542	-0.0182	13	76.6177	4.2136	17.7548	0.9997	0.0550
39	0809	3	2	B7	BG07	1.1805	0.5990	0.0000	14	78.2695	4.3249	18.7047	0.9997	0.0553
39	0810	1	2	B4	BS04	1.0565	0.2802	-3.9932	15	15.7864	2.1498	4.6215	0.9989	0.0553
39	0810	3	2	B8	BG08	1.0751	0.6261	-0.0474	14	73.1927	6.4980	42.2246	0.9991	0.1362
39	3013	1	1	A1	TS02	0.5991	0.8261	-4.0511	15	9.6988	4.1732	17.4159	0.9991	0.4303
39	3013	1	2	A2	TS03	0.8795	0.3858	-5.8718	15	15.3849	3.1500	9.9227		
39	3013		- ا	72	1303	0.0793	U.3000	-0.07 10	10	10.3049	3.1500	9.9227	0.9949	0.2047

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

Code D		т	Г	· · · · · ·					T				·		
39 3901 1 1 BA' BS' 1,5905 0,2845 2,3496 15 16,1746 1,4296 2,0456 0,9996 0,7876 399 3901 1 2 BA' BS' 1,3816 0,3557 1,4368 14 16,1414 1,3577 1,7028 2,8944 0,5996 0,0886 3,938 4,031 1 2 BA' BS' 1,8391 0,2655 2,0338 15 16,1414 1,3570 1,34416 0,0996 0,0886 3,938 4,031 2 2 1 BA' BS' 1,0570 0,0557 1,5386 14 14,1414 1,3570 1,34416 0,9996 0,0886 3,938 4,031 2 2 BA' BS' 0,9530 0,6486 2,8397 1,5386 14 14,1414 1,3570 1,34416 0,9996 0,2886 3,938 0,0381 1 BA' BS' 1,0520 0,0568 0,0288 1,4886 1	State	SHRP	Layer	Test	Loc.	Sample				No.					
99 8001 1 2 BA* BS** 1.3816 0.4528 -1.4045 14 15.2058 1.2717 1.6172 0.9999 0.0854 0.9818 0.981 0.9818				-						Points				R*	S _e /S _v
99 4091 1 1 1 BA* BS* 1.89*1 0.2855 2.038 16 191779 1.7028 2.8944 0.9999 0.0985 99 4091 2 2 1 BA* BS* 0.9589 0.5587 1.8388 0.9588 0.2388 99 4091 2 2 BA* BS* 0.9589 0.5674 99 4091 1 2 BA* BS* 1.7278 0.2949 0.0000 15 85.7724 6.2888 99.449 0.9989 0.0985 99 4091 1 1 BA* BS* 1.7278 0.2949 0.0000 15 85.7724 6.2888 99.449 0.9989 0.0985 99 4091 1 1 BA* BS* 1.7278 0.2949 0.0000 15 85.7724 6.2889 13.00 6.0099 0.0997 0.0523 99 5000 1 1 2 BA* BS* 1.3419 0.2548 2.28397 15 16.8755 1.7767 3.1639 0.9997 0.0523 99 5000 1 2 BA* BS* 0.9987 0.477 0.0000 15 85.8311 8.310 6.1069 0.9994 0.1461 99 5000 1 2 BA* BS* 0.9887 0.477 0.1822 15 72.203 3.7138 13.7024 0.9996 0.0278 99 5000 1 2 BA* BS* 0.9827 0.427 0.422 15 72.203 3.7138 13.7024 0.9996 0.0278 99 5000 1 2 BA* BS* 0.9827 0.427 0.422 15 72.203 3.7138 13.7024 0.9996 0.0278 99 5000 1 2 BA* BS* 0.0827 0.427 0.422 15 72.203 3.7138 13.7024 0.9996 0.0278 99 5000 1 2 BA* BS* 0.0827 0.427 0.422 15 72.203 3.7138 13.7024 0.9996 0.0278 99 5000 1 2 BA* BS* 0.0827 0.427 0.422 15 72.203 3.7138 13.7024 0.9996 0.0278 90 5000 1 2 BA* BS* 0.0827 0.427 0.422 15 18.203 3.7138 13.7024 0.9996 0.0278 90 5000 1 2 BA* BS* 0.0827 0.427 0.422 15 18.203 3.7138 13.7024 0.9996 0.0278 90 5000 1 2 BA* BS* 0.0827 0.427 0.422 15 18.203 3.4007 0.9996 0.0278 90 5000 1 2 BA* BS* 0.0828 0.0836 0.000 15 4.8231 6.078 38.807 0.8996 0.1285 90 5000 1 1 A A 1.702 0.0849 0.0849 0.0849 0.1285 90 5000 1 1 A A 1.702 0.0849 0.085							1.5905	0.2845	-2.3499	15	18.1764	1.4295	2.0435	0.9999	0.0786
39 4031 1 2 2 8' 85" 1.83"0 0.8587 1.8386 14							1.3816	0.4328	-1.4045	14	15.2036	1.2717	1.6172	0.9999	0.0836
99 4031 2 1 1 BA* BG* 0.9839 0.0048 0.1181 15 45.001 10.807 116 B488 0.9858 0.2855 0.2856 0.9936 0.0050 1 2 BA* BG* 0.7575 0.7727 0.0000 15 68.7124 0.2868 95.408 0.9868 0.0855 0.2856 0.9937 0.1022 0.995 0.0050 1 2 BA* BG* 1.2735 0.2840 0.2840 1 1.4 14.7829 1.5177 2.0005 0.9997 0.1022 0.990 0.0000 1 2 BA* BG* 1.3413 0.2848 2.8837 1 1.68755 1.7767 3.1835 0.9997 0.1022 0.990 0.0000 1 2 BA* BG* 0.7159 0.0000 1 5 68.8831 6.3100 6.0009 0.990 0.0000 1 9 0.0000 1 1 2 BA* BG* 0.7159 0.0027 0.1022 1 1 1 BA* BG* 0.0727 0.1822 1 5 72.2603 3.7138 13.7824 0.9996 0.0278 0.0000 1 1 2 BA* BG* 0.0957 0.4027 0.1822 1 5 72.2603 3.7138 13.7824 0.9996 0.0278 0.0000 1 1 2 BA* BG* 0.0957 0.4027 0.1822 1 5 72.2603 3.7138 13.7824 0.9996 0.0278 0.0000 1 1 2 BA* BG* 0.0527 0.4270 2.8898 1 5 1.34693 3.7367 14.131 0.9970 0.0278 0.0000 1 1 2 BA* BG* 0.0527 0.4270 2.8898 1 5 1.85695 1.2825 1.6707 0.9996 0.1283 0.0000 1 1 2 BA* BG* 0.7853 0.0355 0.0000 1 5 48.831 6.0736 38.8907 0.9996 0.1283 0.0000 1 2 BA* BG* 0.7853 0.0395 0.0000 1 5 48.831 6.0736 38.8907 0.9996 0.1283 0.0000 1 1 2 BA* BG* 0.7853 0.0395 0.0000 1 5 48.831 6.0736 38.8907 0.9996 0.0263 0.0000 1 1 2 BA* BG* 0.0544 0.7970 0.1999 4.7729 1 5 12.9144 1.5168 2.3068 0.9996 0.0563 0.0000 1 1 2 BA* BG* 0.0596 0.7970 0.1999 4.7729 1 5 1.29144 1.5168 2.3068 0.9986 0.0163 0.0000 1 1 2 BA* BG* 0.0596 0.07970 0.1999 4.7729 1 5 1.29144 1.5168 2.3068 0.0986 0.0163 0.0000 1 1 2 BA* BG* 0.0896 0.7970 0.1999 4.7729 1 5 1.29144 1.5168 2.3068 0.0986 0.0163 0.0000 1 1 2 BA* BG* 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	39	4031	1	1	BA*	B\$**	1.8391	0.2655	-2.0338	15	19.1379	1.7028	2.8994	0.9999	0.0890
39	39	4031	1	2	B*	BS**	1.5370	0.3557	-1.6368	14	14.1414	1.3570	1.8416	0.9999	0.0960
39	39	4031	2	1	BA*	BG**	0.9639	0.5048	-0.1818	15	45.3001	10.8097	116.8488	0.9958	0.2386
39	39	4031	2	2	BA*	BG**	0.7575	0.6792	0.0000	15	65.7124	6.2888	39.5489	0.9988	0.0957
Section Sect	39	5003	1	1	BA*	BS**	1.2735	0.2940	-3.2631	14	14.7829	1.5177	2.3035	0.9997	0.1027
39	39	5003	1	2	BA*	BG**	1.3413	0.2548	-2.8297	15	16.8755	1.7787	3.1639	0.9997	0.1054
Section Sect	39	5003	2	1	BA*	BG**	1.1465	0.4724	0.0000	15	56,8831	8.3130	69.1059		
39	39	5003	2	2											
39 7021 1 1 BA BS* 1.0522 0.4187 4.3818 15 18.5995 1.2925 1.8707 0.9996 0.0775	39	-													
39															
39				_											
39 702 2 2 8A' 8G'' 0.8546 0.7917 0.2778 15 61.4396 3.4390 11.8264 0.9995 0.0865 39 9006 1 1 AT TS02 0.7979 0.1986 -4.7725 15 12.9144 1.5188 2.3086 0.9998 0.1023 39 9006 2 2 8A' 8B'' 1.1786 0.2895 1.3390 14 10.6945 10.943 1.1974 0.9999 0.1023 39 9006 2 2 8A' 8B'' 0.6896 0.7168 0.1912 15 55.2714 5.8925 32.4043 0.9996 0.1023 39 9006 2 2 8A' 8B'' 0.6896 0.7168 0.1912 15 55.2714 5.8925 32.4043 0.9996 0.1023 39 9002 1 1 8A' 8B'' 0.7500 0.2885 -2.2142 15 10.7029 1.6258 2.6431 0.9996 0.1023 39 9002 1 2 8A' 8B'' 1.2538 0.2983 -1.3040 14 6.8109 1.5731 2.4748 0.9998 0.1023 39 9002 1 2 8B' 8B'' 1.2538 0.2893 -1.3040 14 6.8109 1.5731 2.4748 0.9998 0.3867 40 0.114 1 2 81 88910 0.6288 0.2858 -3.183 15 5.5032 2.1864 4.8943 0.9998 0.3867 40 0.116 1 2 82 8802 0.7489 0.1739 0.0000 15 5.5532 2.8508 8.1271 0.9897 0.5144 40 0.117 1 2 8B 8805 0.8234 0.2199 0.0000 15 8.2657 5.716 3.2811 0.9894 0.6047 40 0.120 1 2 8B 8806 0.7382 0.2144 0.0006 15 6.2618 2.5809 0.3126 0.9884 0.3426 0.0004 40 0.102 1 2 8B 8806 0.7382 0.2144 0.0006 15 6.2618 2.5809 6.8100 0.9998 0.4122 40 0.102 1 2 8B 8806 0.7882 0.1033 0.2241 0.0000 15 8.2645 4.8307 2.33353 0.9977 0.5886 0.3184 0.0014															
39 9006 1 1 1 AI TS02 0.7979 0.1968 4.7725 15 12.9144 1.5188 2.3068 0.9988 0.1176 39 9006 1 2 BA* BS* 1.1786 0.2989 -1.3390 14 10.6948 1.0943 1.1974 0.9996 0.1023 39 9006 2 1 BA* BG* 0.6968 0.7168 0.1912 15 5.82714 5.80625 32.4043 0.9986 0.1033 39 9006 2 1 BA* BG* 0.6968 0.7168 0.71912 15 5.852714 5.80625 32.4043 0.9986 0.1033 39 9022 1 1 BA* BS* 0.9700 0.2885 2.2142 15 10.7029 1.6258 2.6431 0.9988 0.1000 39 9022 1 1 2 BA* BS* 1.2558 0.2263 -1.3040 14 8.8109 1.6731 2.4748 0.9989 0.1568 40 0.114 1 2 B1 BS01 0.6288 0.2586 -3.183 15 5.6038 2.1666 4.6943 0.9980 0.3678 40 0.116 1 2 B2 BS02 0.7489 0.1739 0.0000 15 5.5532 2.8569 8.1271 0.9984 0.6047 40 0.116 1 2 B3 BS03 0.8804 0.2326 0.0000 15 9.4557 5.7176 32.6911 0.9984 0.6047 40 0.101 1 2 B3 BS03 0.8804 0.2326 0.0000 15 8.2045 4.8307 23.3333 0.9971 0.5888 40 0.121 1 3 A.14 TS27 0.5877 0.0916 1.7329 15 5.5403 1.8776 3.5251 0.9986 0.3438 40 0.122 1 2 B4 BS04 0.7382 0.2144 -0.0206 15 6.2618 2.5809 8.1271 0.9984 0.6442 40 0.123 1 2 B8 BS04 0.7382 0.2144 -0.0206 15 6.2618 2.5809 8.5610 0.9889 0.4122 40 0.123 1 2 B8 BS04 0.0330 0.2241 0.0000 15 13.087 9.8899 9.35083 0.9920 0.4122 40 0.123 1 2 B8 BS04 0.0383 0.2241 0.0000 15 13.087 9.8899 8.35083 0.9920 0.4122 40 0.124 1 3 A.17 TS38 0.5997 0.0185 -1.1002 15 4.3894 2.0008 4.3715 0.9984 0.4122 40 0.124 1 3 A.17 TS38 0.5997 0.0185 -1.1002 15 4.3894 2.0008 4.3715 0.9984 0.4122 40 0.1015 1 2 A.2 TS03 0.5881 0.3883 0.1002 15 13.1087 9.8899 9.35083 0.9990 0.1459 40 0.1017 1 1 A.1 TS01 1.0432 0.1972 -1.7187 15 9.2633 1.3513 1.8521 0.9998 0.1459 40 0.1017 1 1 A.1 TS01 1.0432 0.1972 -1.7187 15 9.2633 1.3513 1.8521 0.9998 0.1459 40 0.1017 1 1 A.1 TS01 0.5833 0.5694 -1.5755 15 12.5003 2.0748 4.3050 0.9990 0.1459 40 0.1017 1 1 A.1 TS01 0.5853 0.5694 0.0000 1.5 13.4049 1.5049 0.0000 0.1506 0.0000 0.000															
39															
39 9006 2 1 1 BA* BG* 0.6696 0.7168 -0.1912 15 55.2714 5.6925 32.4043 0.9986 0.1005 39 9006 2 2 BA* BG* 0.7314 0.8509 -0.0579 15 53.6655 5.9842 28.7742 0.9896 0.1005 39 9002 1 1 BA* BS* 0.9700 0.2885 22.142 15 10.70029 1.6285 82.4541 0.9996 0.1505 39 9002 1 1 2 BA* BS* 0.9700 0.2885 22.142 15 10.70029 1.6285 82.4541 0.9996 0.1505 39 9002 1 1 2 BA* BS* 0.9700 0.2885 22.142 15 15 0.70029 1.6285 82.4541 0.9996 0.1768 40 0.114 1 2 B1 BS01 0.6288 0.2585 0.2383 -13.040 14 8.8109 1.5731 2.4748 0.9998 0.1786 40 0.114 1 2 B3 BS02 0.2885 0.2585 0.3183 15 5.6303 2.1666 4.6943 0.9998 0.1786 40 0.117 1 2 B3 BS02 0.9499 0.1799 0.0000 15 5.5532 2.8608 8.1271 0.9987 0.5134 40 0.117 1 2 B3 BS03 0.8904 0.2326 0.0000 15 9.4557 5.7176 32.6911 0.9987 0.5134 40 0.117 1 2 B3 BS05 0.8804 0.2326 0.0000 15 9.4557 5.7176 32.6911 0.9987 0.5134 40 0.112 1 3 A14 TS27 0.5877 0.0915 -1.7329 15 5.5403 1.8775 3.5251 0.9985 0.3389 40 0.122 1 2 B4 BS06 0.0377 0.0915 -1.7329 15 5.5403 1.8775 3.5251 0.9985 0.3389 40 0.102 1 2 B8 BS06 1.0303 0.2244 0.0000 15 9.4557 5.7176 32.5251 0.9985 0.3389 40 0.102 1 2 B8 BS06 1.0303 0.2244 0.0000 15 9.6699 3.5003 0.9980 0.4422 40 0.1015 1 3 A17 TS33 0.8897 0.0185 -1.1002 15 4.8884 2.0006 4.3715 0.9986 0.4723 40 0.1023 1 2 B8 BS06 1.0303 0.2244 0.0000 15 13.0877 0.6899 3.5003 0.9980 0.4723 40 0.1015 1 1 A1 TS01 1.0432 0.1972 -1.7187 15 9.2533 1.3513 1.5261 0.9999 0.4559 40 0.1017 1 1 A1 TS01 1.0432 0.1972 -1.7187 15 9.2533 1.3513 1.5261 0.9990 0.4659 40 0.1017 1 1 A1 TS01 1.0432 0.1972 -1.7187 15 9.2533 1.3513 1.5261 0.9990 0.4659 40 0.1017 1 1 A1 TS01 0.5833 0.5897 0.0000 1 5 8.6558 1.12807 0.9960 0.4599 40 0.1017 1 1 A1 TS01 0.5833 0.5680 0.0000 2.1828 15 3.5950 1.9737 3.89554 0.9965 0.4890 40 0.000 1 1 1 A1 TS01 0.5833 0.5680 0.0000 1 1 1 3.4442 0.5004 1.3004 0.9006 1 1 1 A1 TS01 0.5833 0.5680 0.0000 1 1 1 3.4442 0.5004 1.3004 0.9006 0.4690 0.0000 1 1 0.0000 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.0000 0.00000 0.00000															0.1176
39 9006 2 2 8A* 8G** 0.7314 0.8308 -0.0579 15 53.6655 5.3642 28.7742 0.9988 0.1000													1.1974	0.9999	0.1023
39 9022 1	39	9006	2	1	BA*	BG**	0.6696	0.7168	-0.1912	15	55.2714	5.6925	32.4043	0.9986	0.1030
39	39	9006	2	2	BA*		0.7314	0.6309	-0.0579	15	53.6655	5.3642	28.7742	0.9988	0.1000
40 0114 1 2 B1 BS01 0.828B 0.258B -0.3183 15 5.8038 2.1666 4.6943 0.9989 0.3867 40 0116 1 2 B2 B2 BS02 0.7489 0.1739 0.0000 15 5.5532 2.8508 8.1271 0.9987 0.5134 40 0117 1 2 B3 BS03 0.8080 0.2326 0.0000 15 9.4557 5.7176 32.9311 0.9986 0.6041 40 0120 1 2 B5 BS05 0.8234 0.2199 0.0000 15 8.2043 4.8307 23.3353 0.9971 0.5888 40 0121 1 3 A14 TS27 0.5877 0.0915 1.7329 15 5.5403 1.8775 3.5251 0.9985 0.3388 40 0122 1 2 B4 BS04 0.7382 0.2149 0.0000 15 6.2618 2.5809 6.6610 0.9980 0.4122 40 0123 1 2 B6 BS06 1.0303 0.2341 0.0000 15 13.1087 9.6899 9.5063 0.9928 0.4722 40 0123 1 2 B6 BS06 1.0303 0.2341 0.0000 15 13.1087 9.6899 9.5063 0.9928 0.4722 40 0124 1 3 A17 TS33 0.5897 0.0185 1.1702 15 4.3894 2.0908 4.3715 0.9984 0.4762 40 1015 1 1 A1 TS01 1.0432 0.1972 1.7187 15 9.2633 1.3513 1.8261 0.9999 0.1459 40 1015 1 2 A2 TS03 0.5881 0.3685 -0.1026 15 8.6658 4.0718 15.6793 0.9960 0.4898 40 1017 1 1 A1 TS01 1.7708 0.4159 1.3840 15 23.2895 11.2282 126.0274 0.9951 0.4898 40 1017 1 2 A2 TS03 0.7012 0.6516 1.5159 15 12.5003 2.0748 4.0305 0.9990 0.1660 40 3018 1 1 A1 TS01 0.5633 0.5169 4.2692 15 9.3121 2.2222 4.6381 0.9990 0.1660 40 3018 1 1 A1 TS01 0.5633 0.5169 4.2692 15 9.3121 2.2222 4.8381 0.9965 0.2386 40 4086 1 1 A1 TS01 0.5633 0.5169 1.5159 15 12.5003 2.0748 4.0050 0.9990 0.1660 40 4086 1 1 A1 TS01 0.5633 0.5169 1.5159 15 1.3.4423 1.8242 2.8379 0.9999 0.1260 40 4086 1 1 A1 TS01 0.5633 0.5169 1.5159 15 1.3.4423 1.8242 2.8379 0.9999 0.1260 40 4087 1 1 A1 TS01 0.5633 0.5169 1.5159 15 1.5159 15 1.2503 2.2748 4.0950 0.9990 0.1860 40 4087 1 1 A1 TS01 0.5633 0.5169 1.5159 15 1.5159 15 1.2503 2.2748 4.0950 0.9990 0.1860 40 4087 1 1 A1 TS01 0.5633 0.5169 1.5159 15 1.5159 15 1.2503 2.2748 4.0950 0.9990 0.1860 40 4087 1 1 A1 TS01 0.5633 0.5169 1.5159 15 1.5159 15 1.2503 2.2748 4.0950 0.9990 0.2000 40 4087 1 1 A1 TS01 0.5633 0.5169 1.5159 15 1.5159 15 1.2503 2.2748 4.0950 0.9990 0.2000 40 4087 1 1 A1 TS01 0.5634 0.5555 0.0188 15 1.34423 1.6242 2.6379 0.9999 0.2000 40 4086 1 2 A2 TS03 0.5646 0.5555 0.0188 15 1.34423 1.6242 2.6379 0.9999 0.20	39	9022	1	1.	BA*	BS**	0.9700	0.2885	-2.2142	15	10.7029	1.6258	2.6431	0.9995	0.1519
40 0116 1 2 BSQ 0.7489 0.1739 0.0000 15 5.5532 2.8508 8.1271 0.9967 0.5134 40 0117 1 2 B3 BS030 0.8204 0.0000 15 8.2643 4.3077 23.353 0.9971 0.588 40 0121 1 3 A14 TS27 0.5877 0.0915 -1.7329 15 5.5403 1.8775 23.353 0.9971 0.588 40 0122 1 2 B4 8904 0.7352 0.2144 0.0206 15 6.2618 2.5909 6.6610 0.9989 0.4323 40 0124 1 3 A17 TS33 0.5697 0.0185 -1.1002 15 4.3944 2.0908 4.3715 0.9989 0.4182 40 1015 1 1 A1 TS03 0.5681 0.3653 -0.1026 15 8.6583 1.2516 1.6573 0.9960	39	9022	1	2	BA⁺	BS**	1.2538	0.2363	-1.3040	14	8.8109	1.5731	2.4748	0.9998	0.1785
40 0116 1 2 BSQ 0.7489 0.1739 0.0000 15 5.5532 2.8508 8.1271 0.9967 0.5134 40 0117 1 2 B3 BS030 0.8204 0.0000 15 8.2643 4.3077 23.353 0.9971 0.588 40 0121 1 3 A14 TS27 0.5877 0.0915 -1.7329 15 5.5403 1.8775 23.353 0.9971 0.588 40 0122 1 2 B4 8904 0.7352 0.2144 0.0206 15 6.2618 2.5909 6.6610 0.9989 0.4323 40 0124 1 3 A17 TS33 0.5697 0.0185 -1.1002 15 4.3944 2.0908 4.3715 0.9989 0.4182 40 1015 1 1 A1 TS03 0.5681 0.3653 -0.1026 15 8.6583 1.2516 1.6573 0.9960	40	0114	1	2	B1	BS01	0.6288	0.2585	-0.3183	15	5.6036	2.1666	4.6943	0.9989	0.3867
40 0117 1 2 B3 BS03 0.8804 0.2326 0.0000 15 9.4557 5.7176 32.8911 0.9984 0.6047 40 0120 1 2 B5 BS06 0.8234 0.2199 0.0000 15 B.2045 4.8307 23.3363 0.9971 0.5888 40 0121 1 3 A14 TS27 0.5877 0.0915 1.7329 15 5.5403 1.8775 3.5251 0.9985 0.3389 40 0122 1 2 B4 BS04 0.7352 0.2144 -0.0206 15 6.2618 2.5809 6.6610 0.9989 0.4122 40 0123 1 2 B6 BS06 1.0303 0.2341 0.0000 15 13.1087 9.6899 93.5063 0.9926 0.7377 40 0124 1 3 A17 TS33 0.5897 0.0185 1.17002 15 4.3894 2.0008 4.3715 0.9984 0.4763 40 1015 1 1 A1 TS01 1.0432 0.1972 1.17187 15 9.2633 1.3513 1.8281 0.9998 0.1459 40 1015 1 2 A2 TS03 0.5881 0.3653 -0.1026 15 8.6658 4.0718 16.5793 0.9900 0.4699 40 1017 1 1 A1 TS01 1.7708 0.4159 1.3840 15 23.2895 11.2262 126.0274 0.9991 0.4820 40 1017 1 2 A2 TS03 0.7012 0.6516 1.15159 15 12.5003 2.0748 4.3050 0.9990 0.1689 40 3018 1 1 A1 TS01 0.5833 0.5169 4.2692 15 9.3121 2.2222 4.9381 0.9993 0.2386 40 3018 1 2 A2 TS03 0.2960 0.0000 2.1828 15 3.5950 1.9737 3.8954 0.9926 0.5490 40 4008 1 1 A1 TS01 1.7265 0.6520 4.0008 15 8.9576 2.6429 6.9847 0.9946 0.2950 40 4008 1 2 BA* BS** 0.5161 0.2697 0.0000 15 13.3423 1.6242 2.8379 0.9999 0.1208 40 4008 1 2 BA* BS** 0.5161 0.2697 0.0000 15 13.3423 1.6242 2.8379 0.9999 0.1208 40 4086 1 1 BA* TS01 0.7865 0.5555 -2.6984 15 8.3590 1.9737 3.8954 0.9926 0.2950 40 4086 1 2 BA* BS** 0.5161 0.2697 0.0000 15 16.0911 15.5534 232.6666 0.3319 0.9479 40 4086 1 1 BA* TS01 0.7865 0.5551 -1.9140 15 6.3004 2.2542 5.8914 0.9978 0.2388 40 4087 1 1 BA* BS** 0.6768 0.5514 -1.9140 15 6.3004 2.2542 5.8914 0.9978 0.3288 40 4086 1 2 BA* BS** 0.6919 0.2555 1.9140 15 6.3004 2.2542 5.8939 0.9999 0.1208 40 4086 1 2 BA* BS** 0.6909 0.5551 1.9140 15 6.3004 2.2542 5.8914 0.9978 0.3301 40 4155 1 2 BA* BS** 0.6909 0.5551 1.9140 15 6.3004 2.2542 5.8914 0.9978 0.3301 40 4160 1 2 BA* BS** 0.6910 0.5891 0.2581 1.9140 15 6.3004 2.2542 5.8914 0.9979 0.3001 40 4155 1 2 BA* BS** 0.6906 0.5000 1.3006 1.3006 1.3006 0.3009 0.2007 0.3001 40 4160 1 1 A1 TS01 0.6862 0.5531 -1.9006 15 11.0000 10.1482 0.9965 0.9981 0.3584 40 4160 1 2 BA* BS** 0.6906	40	0116	1	2	B2	BS02	0.7489		0.0000	15	5.5532	2.8508	8,1271	0.9987	
40 0120 1 2 B5 BS05 0.8234 0.2199 0.0000 15 B.2045 4.8307 23.3353 0.9971 0.5888 4.0 0121 1 3 A14 TS27 0.5877 0.0915 -1.7329 15 5.5403 1.8775 3.5251 0.9986 0.3389 4.0 0122 1 2 B4 BS04 0.7352 0.2144 -0.0206 15 6.2618 1.8775 3.5251 0.9986 0.3389 4.0 0123 1 2 B6 BS06 1.0303 0.2341 0.0000 15 13.1087 9.8699 93.5063 0.9926 0.7377 40 0.0124 1 3 A17 TS33 0.5897 0.0185 -1.1002 15 4.3884 2.0908 4.3715 0.9984 0.4783 4.0 0.0125 1 1 A1 TS31 1.021 1.021 15 9.2633 1.8513 1.8261 0.9986 0.4783 4.0 0.015 1 1 A1 TS31 0.5897 0.0185 -1.1002 15 4.3884 2.0908 4.3715 0.9984 0.4783 4.0 0.015 1 2 2 2 TS03 0.5891 0.3653 -0.1026 15 8.6658 4.0718 15.5793 0.9960 0.4599 4.0 0.1015 1 2 2 2 TS03 0.5891 0.3653 -0.1026 15 8.6658 4.0718 15.5793 0.9960 0.4599 4.0 0.1017 1 1 A1 TS01 1.7708 0.4159 -1.3840 15 23.2895 11.2262 126.0274 0.9951 0.4820 4.0 0.1017 1 2 A2 TS03 0.7012 0.6516 -1.5159 15 12.5003 2.0748 4.3050 0.9990 0.1660 4.0 3018 1 1 A1 TS01 0.5422 0.6520 4.0088 15 8.9576 2.6429 6.9847 0.9945 0.9248 4.0 4086 1 1 A1 TS01 0.5422 0.6520 4.0088 15 8.9576 2.6429 6.9847 0.9946 0.2950 4.0 4086 1 2 A2 TS03 0.5464 0.5555 -2.8984 15 8.3427 1.9925 3.9701 0.9978 0.2388 4.0 400 4087 1 2 BA* BS** 0.5161 0.2697 0.0000 15 13.0311 3.0449 9.2715 0.9999 0.1208 4.0 4087 1 2 BA* BS** 0.5161 0.2697 0.0000 15 13.0311 3.0449 9.2715 0.9998 0.2386 4.0 4087 1 2 BA* BS** 0.5981 0.2685 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 4.0 4155 1 2 BA* BS** 0.5978 0.2681 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 4.0 4155 1 2 BA* BS** 0.5981 0.2681 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 4.0 4155 1 2 BA* BS** 0.5981 0.2681 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 4.0 4155 1 2 BA* BS** 0.5981 0.5886 0.5117 0.5696 15 13.0311 3.0449 9.2715 0.9985 0.2397 4.0 4155 1 2 BA* BS** 0.6980 0.5895 0.5331 3.8625 15 13.0311 3.0449 9.2715 0.9985 0.2397 4.0 4155 1 2 BA* BS** 0.6980 0.5080 -1.3073 1 15 12.5997 2.4675 0.0887 0.9980 0.2006 4.0 4155 1 2 BA* BS** 0.6980 0.5980 0.1393 1 15 13.0313 3.2421 10.3762 0.9987 0.2397 4.0 4160 1 1 A1 TS01 0.6862 0.5838 0.0331 3.8980 0.9997 0.	40	0117	1	2	B3	BS03	0.8804	0.2326	0.0000			5.7176			
40 0121 1 3 A14 TS27 0.5877 0.0915 -1.7329 15 5.5403 1.8775 3.5251 0.9985 0.3388 40 0122 1 2 B4 B504 0.7352 0.2144 -0.0206 15 6.2618 2.5809 6.6610 0.9989 0.4122 40 0123 1 2 B6 BS06 1.0303 0.2341 0.0000 15 13.1067 9.6689 93.5063 0.9926 0.7377 40 0124 1 3 A17 TS33 0.5897 0.0185 -1.1002 15 4.3994 2.0906 4.3715 0.9984 0.4763 40 1015 1 1 A1 TS01 1.0432 0.1972 -1.7187 15 9.2633 1.3513 1.8261 0.9998 0.1459 40 1015 1 2 A2 TS03 0.5881 0.3665 -0.1026 15 8.6656 4.0718 16.5793 0.9996 0.4699 40 1017 1 1 A1 TS01 1.7708 0.4159 -1.3840 15 23.2895 11.2262 126.0274 0.9951 0.4820 40 1017 1 1 2 A2 TS03 0.7012 0.6516 -1.5159 15 12.5003 2.0748 4.3050 0.9990 0.1660 40 3018 1 1 A1 TS01 0.5833 0.5169 4.2692 15 9.3121 2.2222 4.9381 0.9963 0.2386 40 3018 1 1 A1 TS01 0.5823 0.5260 4.0088 15 8.576 2.2422 6.9847 0.9946 0.2850 40 4086 1 1 A1 TS01 0.5422 0.6520 4.0088 15 8.576 2.2422 6.9847 0.9946 0.2850 40 4086 1 2 A2 TS03 0.5464 0.5555 -2.6984 15 8.3427 1.9925 3.9701 0.9978 0.2388 40 4087 1 1 A1 TS01 1.7265 0.2555 -0.6188 15 13.4423 1.8242 2.6379 0.9999 0.1208 40 4087 1 1 A1 TS01 0.5839 0.5464 0.5555 -2.6984 15 8.3576 2.2422 2.6379 0.9999 0.1208 40 4087 1 1 A1 TS01 0.5820 0.6520 4.0088 15 8.576 2.2422 2.6668 0.9319 0.9478 40 4087 1 1 A1 TS01 0.5839 0.5464 0.5555 -2.6984 15 8.3427 1.9925 3.9701 0.9978 0.2388 40 4086 1 2 BA* BS** 0.5991 0.2581 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 40 4087 1 1 BA* BS** 0.5991 0.2581 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 40 4155 1 2 BA* BS** 0.5991 0.5861 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 40 4155 1 2 BA* BS** 0.5991 0.5861 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 40 4155 1 2 BA* BS** 0.5991 0.5861 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 40 4155 1 2 BA* BS** 0.5960 0.5836 -1.3037 15 12.5993 2.2571 5.0945 0.9967 0.3578 40 4156 1 2 BA* BS** 0.5766 0.5117 -0.0566 15 11.3016 3.2645 5.0646 0.9979 0.3578 40 4160 1 2 A2 TS03 0.7016 0.5886 0.3389 -1.3724 15 7.5637 3.3525 11.0572 0.9963 0.3584 40 4160 1 2 A2 TS03 0.7016 0.5866 0.5117 -0.0566 15 11.0000 10.1482 10.29555 0.9814 0.9226	40	0120	1												
40 0122 1 2 B4 BS04 0.7352 0.2144 -0.0206 15 6.2618 2.5809 6.6810 0.9989 0.4122 40 0123 1 2 B6 BS06 1.0303 0.2341 0.0000 15 13.1087 9.6899 93.5063 0.9926 0.7377 40 0124 1 3 A17 TS33 0.5897 0.0185 -1.1002 15 4.3894 2.0908 4.3715 0.9984 0.4763 40 1015 1 1 A1 TS01 1.0432 0.1972 -1.7187 15 9.2633 1.3513 1.8261 0.9998 0.1459 40 1015 1 2 A2 TS03 0.5881 0.3653 -0.1026 15 8.6658 4.0718 15.5793 0.9960 0.4699 40 1017 1 1 A1 TS01 1.7706 0.4159 -1.3840 15 23.2895 11.2262 126.0274 0.9951 0.4820 40 1017 1 2 A2 TS03 0.5881 0.3653 -0.1026 15 12.5003 2.0748 4.3050 0.9990 0.1680 40 3018 1 1 A1 TS01 0.5833 0.5169 -4.2692 15 9.3121 2.2222 4.9381 0.9963 0.2386 40 3018 1 2 A2 TS03 0.2960 0.0000 -2.1828 15 3.5950 1.9737 3.8954 0.9928 0.5490 40 4086 1 1 A1 TS01 0.5833 0.5444 0.5555 -2.6994 15 8.3427 1.9925 3.9701 0.9978 0.2388 40 4086 1 1 A1 TS01 0.5823 0.5555 -0.6188 15 13.4423 1.6242 2.6379 0.9999 0.1208 40 4087 1 1 A1 TS01 0.5835 0.5551 -0.6188 15 13.4423 1.6242 2.6379 0.9999 0.1208 40 4087 1 2 BA* BS** 0.5991 0.2587 -0.9000 15 16.0911 15.2534 22.6666 0.9319 0.9479 40 4086 1 2 BA* BS** 0.5991 0.2581 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 40 4086 1 1 A1 TS01 0.7885 0.5631 -3.6829 15 12.2987 2.4675 6.0887 0.9999 0.2006 40 4057 1 2 BA* BS** 0.5991 0.2581 -1.9140 15 6.3004 2.2542 5.0614 0.9978 0.3578 40 4155 1 1 BA* BS** 0.5991 0.2587 -0.6580 15 11.3031 3.0449 9.2715 0.9985 0.2387 40 4155 1 2 BA* BS** 0.5991 0.2581 -1.9140 15 6.3004 2.2542 5.0614 0.9978 0.3578 40 4155 1 2 BA* BS** 0.5991 0.2585 -0.6188 15 11.3031 3.0449 9.2715 0.9995 0.2387 40 4156 1 2 BA* BS** 0.5991 0.2585 -0.6185 15 11.3031 3.0449 9.2715 0.9995 0.2387 40 4156 1 2 BA* BS** 0.5991 0.2585 0.5111 0.5056 15 11.3031 3.0449 9.2715 0.9995 0.2387 40 4156 1 2 BA* BS** 0.5991 0.2585 0.5111 0.5056 15 13.0311 3.0449 9.2715 0.9995 0.2387 40 4156 1 2 BA* BS** 0.5991 0.5885 0.5111 5.9936 2.2571 5.0945 0.9977 0.3301 40 4156 1 1 A1 TS01 0.6866 0.5836 0.5117 1.9006 15 11.0000 10.1482 10.2585 0.9981 0.3598 40 4160 2 2 BA* BS** 0.6902 0.5686 0.3835 5.9661 15 13.0366 9.665 7.2453															
40 0123 1 2 B6 BS06 1.0303 0.2341 0.0000 15 13.1087 9.8699 93.5063 0.9926 0.7377 40 0124 1 3 A17 TS33 0.5897 0.0185 -1.1002 15 4.3894 2.0908 4.3716 0.9984 0.4783 40 1015 1 1 A1 TS01 1.0432 0.1972 -1.7187 15 9.2633 1.3513 1.8261 0.9998 0.1458 40 1015 1 2 A2 TS03 0.5881 0.3853 -0.1026 15 8.6658 4.0718 16.5739 0.9960 0.4699 40 1017 1 1 A1 TS01 1.7708 0.4159 -1.3840 15 23.2895 11.2262 126.0274 0.9951 0.4820 40 1017 1 2 A2 TS03 0.7012 0.6516 -1.5159 15 12.5003 2.0748 4.3050 0.9990 0.1680 40 3018 1 1 A1 TS01 0.5833 0.5169 -4.2892 15 9.3121 2.2222 4.9381 0.9963 0.2388 40 3018 1 2 A2 TS03 0.2960 0.0000 -2.1828 15 3.5950 1.9737 3.9954 0.9928 0.5490 40 4086 1 1 A1 TS01 0.5422 0.6520 -4.0088 15 8.9576 2.6429 6.9847 0.9946 0.2950 40 4086 1 2 A2 TS03 0.5444 0.5555 -2.6994 15 8.3427 1.9925 3.9701 0.9978 0.2388 40 4086 1 2 BA* BS** 0.5161 0.2697 0.0000 15 13.4423 1.6242 2.6379 0.9999 0.1208 40 4087 1 1 A1 TS01 1.7265 0.2555 -0.6188 15 13.4423 1.6242 2.6379 0.9999 0.2080 40 4088 1 2 BA* BS** 0.5161 0.2697 0.0000 15 6.0901 15.2534 232.6666 0.9319 0.9479 40 4088 1 2 BA* BS** 0.5991 0.2581 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 40 4155 1 1 BA* BS** 0.6765 0.5161 0.2697 0.0000 15 11.3017 3.7357 13.9554 0.9971 0.3901 40 4155 1 1 BA* BS** 0.6765 0.5117 0.6589 15 11.3167 3.7357 13.9554 0.9971 0.3301 40 4157 1 1 BA* BS** 0.6768 0.5117 0.5896 15 11.3167 3.7357 13.9554 0.9971 0.3301 40 4158 1 1 BA* BS** 0.6748 0.8605 -1.3037 15 12.5993 2.2571 5.0945 0.9988 0.1791 40 4160 1 2 BA* BS** 0.6980 0.3899 -1.3724 15 7.5837 3.3252 11.0572 0.9985 0.3894 40 4160 1 1 A1 TS01 0.5848 0.3835 -0.5911 15 3.0198 3.2212 10.3762 0.9987 0.2397 40 4158 1 1 BA* BS** 0.6768 0.5117 0.0589 15 10.8815 3.8615 13.4066 0.9991 0.3428 40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9811 15 3.0198 3.2212 10.3762 0.9987 0.2397 40 4158 1 1 BA* BS** 0.6768 0.5117 0.0589 15 1.3098 2.2571 5.0945 0.9985 0.3984 40 4160 1 1 A1 TS01 0.6876 0.5174 0.0000 15 11.3000 10.1482 10.2895 0.9911 0.3428 40 4160 1 1 A1 TS01 0.6876 0.5174 0.0000 15 11.3000 10.1482 10.2895 0.9911 0.3428 40 4160															
40 0124 1 3 A17 TS33 0.5897 0.0185 -1.1002 15 4.3894 2.0908 4.3715 0.9984 0.4763 40 1015 1 1 A1 TS01 1.0432 0.1972 -1.7187 15 9.2633 1.3513 1.8261 0.9998 0.1459 40 1015 1 2 A2 TS03 0.5881 0.3653 -0.1026 15 8.6658 4.0718 16.5793 0.9960 0.4699 40 1017 1 1 A1 TS01 1.7708 0.4159 -1.3840 15 23.2895 11.2262 126.0274 0.9951 0.4820 40 1017 1 2 A2 TS03 0.7012 0.6516 -1.5159 15 12.5003 2.0748 4.3050 0.9990 0.1660 40 3018 1 1 A1 TS01 0.5833 0.5169 -4.2692 15 9.3121 2.2222 4.9381 0.9963 0.2386 40 3018 1 2 A2 TS03 0.2996 0.0000 -2.1828 15 3.5950 1.9737 3.8954 0.9928 0.5490 40 4086 1 1 A1 TS01 0.5422 0.6526 -4.0088 15 8.9576 2.6429 6.9847 0.9946 0.2950 40 4086 1 1 A1 TS01 0.5422 0.6525 -0.6188 15 13.4423 1.6242 2.6379 0.9999 0.1208 40 4087 1 1 A1 TS01 1.7265 0.2555 -0.6188 15 13.4423 1.6242 2.6379 0.9999 0.1208 40 4087 1 2 BA' BS'' 0.5991 0.2581 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.2386 40 4088 1 2 BA' BS'' 0.5991 0.2581 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3238 40 4088 1 2 BA' BS'' 0.5991 0.2581 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 40 4155 1 1 BA' BS'' 0.5993 0.4536 -2.3316 15 13.0311 3.0449 9.2715 0.9985 0.2307 40 4155 1 1 BA' BS'' 0.6765 0.5117 0.6596 15 11.3167 3.7357 13.9554 0.9991 0.3001 40 4157 1 1 BA' BS'' 0.6765 0.5117 0.6596 15 11.3167 3.7357 13.9554 0.9991 0.3301 40 4158 1 1 BA' BS'' 0.6765 0.5117 0.6596 15 11.3167 3.7357 13.9554 0.9991 0.3301 40 4158 1 1 BA' BS'' 0.6765 0.5117 0.6596 15 11.3167 3.7357 13.9554 0.9991 0.3301 40 4158 1 1 BA' BS'' 0.6765 0.5117 0.6596 15 11.3167 3.7357 13.9554 0.9991 0.3301 40 4160 1 1 BA' BS'' 0.6902 0.3899 -1.3724 15 7.5637 3.3252 11.0572 0.9983 0.4396 40 4160 1 1 BA' BS'' 0.6903 0.3899 -1.3724 15 7.5637 3.3252 11.0572 0.9983 0.4396 40 4160 1 1 BA' BS'' 0.6080 0.3899 -1.3724 15 7.5637 3.3252 11.0572 0.9983 0.4396 40 4160 1 2 BA' BS'' 0.6080 0.3899 -1.3724 15 7.5637 3.3252 11.0572 0.9983 0.4396 40 4160 1 2 BA' BS'' 0.6080 0.5896 0.0393 15 16.8463 2.9331 8.6030 0.9997 0.2475 40 4160 1 1 BA' BS'' 0.6086 0.5177 0.0066 15 8.8452 7.8970 62.2086 0.9933 0.9977 0.325440 416															
40 1015 1 1 A1 TS01 1.0432 0.1972 -1.7187 15 9.2833 1.3813 1.8281 0.9998 0.1459 40 1015 1 2 A2 TS03 0.5881 0.3853 -0.1026 15 8.6658 4.0718 16.5793 0.9960 0.4699 40 1017 1 1 A1 TS01 1.7708 0.4159 -1.3840 15 23.2895 11.2282 126.0274 0.9951 0.4820 40 1017 1 2 A2 TS03 0.7012 0.6516 -1.5159 15 12.25003 2.0748 4.3050 0.9990 0.1660 40 3018 1 1 A1 TS01 0.5833 0.5169 -4.2692 15 9.3121 2.2222 4.9381 0.9963 0.2386 40 3018 1 2 A2 TS03 0.2960 0.0000 -2.1828 15 3.5950 1.9737 3.8954 0.9928 0.5490 40 4086 1 1 A1 TS01 0.522 0.6520 -4.0088 15 8.9576 2.6429 6.9847 0.9946 0.2950 40 4086 1 2 A2 TS03 0.5464 0.5555 -2.6984 15 8.3427 1.9925 3.9701 0.9978 0.2386 40 4087 1 1 A1 TS01 1.7286 0.2555 -0.6188 15 13.4423 1.6242 2.6379 0.9999 0.1208 40 4087 1 2 BA* BS** 0.5161 0.2697 0.0000 15 16.0911 15.2534 232.6666 0.9319 0.9479 40 4088 1 2 BA* BS** 0.5991 0.2581 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 40 4056 1 1 A1 TS01 0.7895 0.5631 -3.8829 15 12.2987 2.4675 6.0887 0.9980 0.2006 40 4155 1 1 BA* BS** 0.6765 0.5117 -0.6596 15 11.3167 3.7357 13.9554 0.9971 0.9988 0.7391 40 4157 1 1 BA* BS** 0.6912 0.5342 -1.9906 15 10.8815 3.6615 13.4066 0.9967 0.9988 0.7391 40 4158 1 1 BA* BS** 0.6912 0.5342 -1.9906 15 10.8815 3.6615 13.4066 0.9967 0.9988 0.7391 40 4158 1 1 BA* BS** 0.6902 0.5389 -1.3724 15 7.5637 3.3252 11.0572 0.9988 0.7391 40 4158 1 1 BA* BS** 0.6902 0.5342 -1.9906 15 10.8815 3.6615 13.4066 0.9967 0.9885 0.32837 40 4158 1 1 BA* BS** 0.6902 0.5349 -1.9706 15 10.8815 3.6615 13.4066 0.9967 0.9249 40 4160 1 2 BA* BS** 0.6902 0.5349 -1.9706 15 10.8815 3.6615 13.4066 0.9967 0.9246 40 4160 1 1 BA* BS** 0.6902 0.5349 -1.9706 15 10.8815 3.6615 13.4066 0.9967 0.9246 40 4160 1 1 BA* BS** 0.6902 0.5349 -1.9706 15 10.8815 3.6615 13.4068 0.9967 0.2475 40 4160 1 1 BA* BS** 0.6902 0.5349 -1.9706 15 10.8815 3.6615 13.4068 0.9967 0.32428 40 4160 1 2 BA* BS** 0.6902 0.5349 -1.9706 15 10.8815 3.6615 13.4068 0.9967 0.32428 40 4160 1 2 BA* BS** 0.6902 0.5892 0.5896 0.5893 0.5896 0.5896 0.03931 8.6030 0.9997 0.2475 40 4160 1 1 BA* BS** 0.6906 0.8906 0.0															
40 1015 1 2 A2 TS03 0.5881 0.3863 -0.1026 15 8.6658 4.0718 16.5793 0.9960 0.4689 40 1017 1 1 A1 TS01 1.7708 0.4159 -1.3840 15 23.2895 11.2262 126.0274 0.9951 0.4820 40 1017 1 2 A2 TS03 0.7012 0.8516 -1.5159 15 12.5003 2.0748 4.3050 0.9990 0.1680 40 3018 1 1 A1 TS01 0.5833 0.5169 4.2692 15 3.5950 1.9737 3.8954 0.9963 0.2386 40 4086 1 1 A1 TS01 0.5422 0.6520 -4.0088 15 8.9576 2.6429 6.9847 0.9946 0.2950 40 4087 1 A1 TS01 1.7265 0.2555 -2.6984 15 8.3427 1.9925 3.97				-											
40 1017 1 1 1 A1 TS01 1.7706 0.4159 -1.3840 15 23.2895 11.2262 126.0274 0.9951 0.4820 40 1017 1 2 A2 TS03 0.7012 0.6516 -1.5159 15 12.5003 2.0748 4.3050 0.9990 0.1660 40 3018 1 1 A1 TS01 0.5833 0.5169 4.2892 15 9.3121 2.2222 4.9381 0.9963 0.2386 40 3018 1 2 A2 TS03 0.2960 0.0000 -2.1828 15 3.5950 1.9737 3.8954 0.9928 0.5490 40 4086 1 1 A1 TS01 0.5422 0.6520 4.0088 15 8.9576 2.6829 6.9847 0.9946 0.2950 40 4086 1 2 A2 TS03 0.5464 0.5555 -2.6984 15 8.3427 1.9925 3.9701 0.9978 0.2388 40 4087 1 1 A1 TS01 1.7265 0.2555 -0.6188 15 13.4423 1.6242 2.6379 0.9999 0.1208 40 4087 1 2 BA* BS** 0.5161 0.2697 0.0000 15 16.0911 15.2534 232.6666 0.9319 0.9479 40 4088 1 2 BA* BS** 0.5991 0.2581 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 40 4155 1 1 A1 TS01 0.7895 0.5631 -3.6829 15 12.2987 2.4675 6.0887 0.9990 0.2006 40 4155 1 1 BA* BS** 0.9793 0.4536 2.3316 15 13.0311 3.0449 9.2715 0.9985 0.2337 40 4157 1 1 BA* BS** 0.6765 0.5117 -0.6596 15 11.3167 3.7357 13.9554 0.9971 0.3301 40 4158 1 1 BA* BS** 0.6080 0.3899 -1.3724 15 7.5637 3.3252 11.0572 0.9988 0.1791 40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9611 15 3.0188 3.3666 11.2667 0.9885 0.3584 40 4160 1 1 BA* BG** 0.6967 0.3492 -0.0154 15 3.03685 9.6157 92.4612 0.9977 0.2475 40 4160 1 1 A1 TS01 0.68876 0.7174 0.0000 15 11.0000 10.1482 10.9985 0.9987 0.3526 40 4160 1 1 A1 TS01 0.6886 0.3835 -5.9611 15 3.03685 9.6157 92.4612 0.9997 0.2475 40 4160 1 2 A2 TS02 1.0501 0.4262 -1.77440 15 13.0368 9.6157 92.4612 0.9997 0.2475 40 4160 1 1 A1 TS01 0.68876 0.7174 0.0000 15 11.0000 10.1482 10.9985 0.9987 0.3284 40 4160 1 2 A2 TS02 1.0501 0.4262 -1.77440 15 13.03685 9.6157 92.4612 0.9973 0.1566 40 4160 1 1 A1 TS01 0.68876 0.7174 0.0000 15 11.0000 10.1482 10.9985 0.9981 0.9286 40 4160 1 1 A1 TS01 0.68876 0.7174 0.0000 15 11.0000 10.1482 10.9985 0.9987 0.2475 40 4160 1 1 A1 TS01 0.68876 0.7174 0.0000 15 11.0000 10.1482 10.9985 0.9987 0.2475 40 4160 1 1 A1 TS01 0.68876 0.7775 0.0655 15 8.8452 7.8870 62.2048 0.9833 0.9977 0.2259															
40 1017 1 2 A2 TS03 0.7012 0.8516 -1.5159 15 12.5003 2.0748 4.3050 0.9990 0.1680 40 3018 1 1 A1 TS01 0.5833 0.5169 -4.2692 15 9.3121 2.2222 4.9381 0.9963 0.2386 40 3018 1 2 A2 TS03 0.2960 0.0000 -2.1828 15 3.5950 1.9737 3.8954 0.9928 0.5490 40 4086 1 1 A1 TS01 0.5422 0.6520 -4.0088 15 8.9576 2.6429 6.9847 0.9946 0.2950 40 4086 1 2 A2 TS03 0.5464 0.5555 -2.6984 15 8.3427 1.9925 3.9701 0.9978 0.2388 40 4087 1 1 A1 TS01 1.7265 0.2555 0.6188 15 13.4423 1.6242 2.6379 0.9999 0.1208 40 4087 1 2 BA* BS** 0.5161 0.2697 0.0000 15 16.0911 15.2534 232.6666 0.9319 0.9479 40 4088 1 2 BA* BS** 0.5991 0.2581 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 40 4155 1 1 A1 TS01 0.7895 0.5631 -3.6829 15 12.2997 2.4675 6.0887 0.9980 0.2006 40 4155 1 2 BA* BS** 0.6765 0.5117 -0.6596 15 11.3167 3.7357 13.9554 0.9971 0.3301 40 4157 1 2 BA* BS** 0.6765 0.5117 -0.6596 15 11.3167 3.7357 13.9554 0.9971 0.3301 40 4158 1 1 BA* BS** 0.6912 0.5342 -1.9908 15 10.6815 3.6615 13.4066 0.9961 0.3428 40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9611 15 3.0368 3.3566 11.2667 0.9983 0.4396 40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9611 15 3.0368 3.3566 11.2667 0.9983 0.4396 40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9611 15 3.0368 3.3566 11.2667 0.9983 0.4396 40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9611 15 3.0368 3.3566 11.2667 0.9983 0.4396 40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9611 15 3.0368 3.3566 11.2667 0.9983 0.4396 40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9611 15 3.03685 7.2455 52.4938 0.9977 0.2259 40 4160 2 1 BA* BG** 0.9827 0.3492 -0.0154 15 3.00685 7.2455 52.4938 0.9977 0.2259 40 4160 1 1 A1 TS01 0.6876 0.7174 0.0000 15 11.0000 10.1482 102.9955 0.9814 0.9226 40 4160 1 1 A1 TS01 0.6876 0.7174 0.0000 15 11.0000 10.1482 102.9955 0.9814 0.9226 40 4160 1 1 A1 TS01 0.6876 0.7174 0.0000 15 11.0000 10.1482 102.9955 0.9814 0.9226 40 4160 1 1 A1 TS01 0.6876 0.7174 0.0000 15 11.0000 10.1482 102.9955 0.9814 0.9226 40 4161 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 18.4623 2.9331 8.6030 0.9992 0.1589 40 4162 1 2 A2 TS03 0.7156 0.2577 -1.8255 15 7.9888 2.8343 8.0331 0.9977 0.3831															
40 3018 1 1 1 A1 TS01 0.5833 0.5169 4.2692 15 9.3121 2.2222 4.9381 0.9963 0.2366 40 3018 1 2 A2 TS03 0.2960 0.0000 -2.1828 15 3.5950 1.9737 3.8954 0.9928 0.5490 40 4086 1 1 A1 TS01 0.5422 0.6520 4.0088 15 8.9576 2.6429 6.9847 0.9946 0.2950 40 4086 1 2 A2 TS03 0.5464 0.5555 -2.6984 15 8.3427 1.9925 3.9701 0.9978 0.2388 40 4087 1 1 A1 TS01 1.7265 0.2555 -0.6188 15 13.4423 1.6242 2.6379 0.9999 0.1208 40 4087 1 2 BA* BS** 0.5161 0.2697 0.0000 15 16.0911 15.2534 232.6666 0.9319 0.9479 40 4088 1 2 BA* BS** 0.5991 0.2581 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 40 4155 1 1 A1 TS01 0.7895 0.5631 -3.6829 15 12.2987 2.4675 6.0887 0.9980 0.2006 40 4155 1 2 BA* BS** 0.6765 0.5117 -0.6596 15 11.3167 3.7357 13.9554 0.9971 0.3301 40 4157 1 1 BA* BS** 0.6765 0.5117 -0.6596 15 11.3167 3.7357 13.9554 0.9971 0.3301 40 4158 1 1 BA* BS** 0.6748 0.6605 -1.3037 15 12.5993 2.2571 5.0945 0.9988 0.1791 40 4158 1 1 BA* BS** 0.6912 0.5342 -1.9900 15 10.8815 3.6615 13.0406 0.9961 0.3428 40 4158 1 1 BA* BS** 0.6906 0.3399 -1.3724 15 7.5637 3.3252 11.0572 0.9985 0.3428 40 4160 1 1 A1 TS01 0.5848 0.3385 -5.9611 15 9.3646 3.3666 11.2667 0.9986 0.3428 40 4160 1 1 BA* BS** 0.6906 0.3899 -1.3724 15 7.5637 3.3252 11.0572 0.9985 0.3428 40 4160 1 1 A1 TS01 0.5848 0.3385 -5.9611 15 9.3646 3.3666 11.2667 0.9986 0.3584 40 4160 1 1 A1 TS01 0.5848 0.3385 -5.9611 15 9.3646 3.3666 11.2667 0.9985 0.3584 40 4160 2 1 BA* BG** 0.9827 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 2 2 BA* BG** 0.9827 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4161 1 1 A1 TS01 0.6876 0.714 0.0000 15 11.0000 10.1482 10.2985 0.9814 0.9226 40 4161 1 1 A1 TS01 0.6876 0.714 0.0000 15 11.0000 10.1482 10.2985 0.9814 0.9226 40 4161 1 1 A1 TS01 0.6876 0.714 0.0000 15 11.0000 10.1482 10.2985 0.9814 0.9226 40 4161 1 1 A1 TS01 0.6876 0.714 0.0000 15 11.0000 10.1482 10.2985 0.9814 0.9226 40 4161 1 1 A1 TS01 0.6876 0.714 0.0000 15 18.6623 2.9331 8.6030 0.9977 0.2259 40 4164 1 1 BA* BS** 0.7598 0.5698 0.5090 1.5090 15 12.1212 3.8623 14.9177 0.9974 0.3186									-1.3840		23.2895	11.2262	126.0274	0.9951	0.4820
40 3018 1 2 A2 TS03 0.2960 0.0000 -2.1828 15 3.5950 1.9737 3.8954 0.9928 0.5490 40 4086 1 1 A1 TS01 0.5422 0.6520 -4.0088 15 8.9576 2.6429 6.9847 0.9946 0.2950 40 4086 1 2 A2 TS03 0.5464 0.5555 -2.6984 15 8.3427 1.9925 3.9701 0.9978 0.2388 40 4087 1 1 A1 TS01 1.7265 0.2555 -0.6188 15 13.4423 1.6242 2.6379 0.9999 0.1208 40 4087 1 2 BA* BS** 0.5161 0.2697 0.0000 15 16.0911 15.2534 232.6666 0.9319 0.9479 40 4088 1 2 BA* BS** 0.5991 0.2581 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 40 4155 1 1 A1 TS01 0.7695 0.5631 -3.6829 15 12.2987 2.4675 6.0867 0.9980 0.2006 40 4155 1 2 BA* BS** 0.9793 0.4536 -2.3316 15 13.0311 3.0449 9.2715 0.9985 0.2337 40 4157 1 1 BA* BS** 0.6765 0.5117 -0.6596 15 11.3167 3.7357 13.9554 0.9971 0.3301 40 4158 1 1 BA* BS** 0.6748 0.6605 -1.3037 15 12.5993 2.2571 5.0945 0.9988 0.1791 40 4158 1 1 BA* BS** 0.6912 0.5342 -1.9908 15 10.8815 3.6815 13.4066 0.9961 0.3428 40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9611 15 9.3646 3.3566 11.2667 0.9885 0.3584 40 4160 1 1 BA* BG** 0.6902 0.3987 0.3492 -0.0154 15 13.0136 3.2212 10.3762 0.9987 0.2475 40 4160 2 1 BA* BG** 0.9927 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 1 1 A1 TS01 0.6876 0.1714 0.0000 15 13.0000 10.1482 102.9855 0.9814 0.9927		-	1	2	A2	TS03	0.7012	0.6516	-1.5159	15	12.5003	2.0748	4.3050	0.9990	0.1660
40 4086 1 1 A1 TS01 0.5422 0.6620 -4.0088 15 8.9576 2.6429 6.9847 0.9946 0.2950 40 4086 1 2 A2 TS03 0.5464 0.5555 -2.6984 15 8.3427 1.9925 3.9701 0.9978 0.2388 40 4087 1 1 A1 TS01 1.7265 0.2555 -0.6188 15 13.4423 1.6242 2.6379 0.9999 0.1208 40 4087 1 2 BA* BS** 0.5161 0.2697 0.0000 15 16.0911 15.2534 232.6666 0.9319 0.9479 40 4088 1 2 BA* BS** 0.5991 0.2581 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 40 4155 1 1 A1 TS01 0.7895 0.5631 -3.6829 15 12.2987 2.4675 6.0887 0.9980 0.2006 40 4155 1 2 BA* BS** 0.6765 0.5117 -0.6596 15 13.0311 3.0449 9.2715 0.9985 0.2337 40 4157 1 1 BA* BS** 0.6765 0.5117 -0.6596 15 11.3167 3.7357 13.9554 0.9971 0.3191 40 4158 1 1 BA* BS** 0.6912 0.5342 -1.9908 15 10.6815 3.6615 13.4066 0.9961 0.3428 40 4158 1 2 BA* BS** 0.6080 0.3899 -1.3724 15 7.5637 3.3252 11.0572 0.9963 0.4396 40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9611 15 9.3646 3.3566 11.2667 0.9885 0.3584 40 4160 1 1 BA* BG** 0.9927 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 2 1 BA* BG** 0.9927 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 2 1 BA* BG** 0.9927 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 1 1 A1 TS01 0.6876 0.7144 0.0000 15 11.0000 10.1482 10.24612 0.9987 0.2564 40 4161 1 2 A2 TS02 1.0501 0.4262 -1.7440 15 13.0136 3.2212 10.3762 0.9987 0.2475 40 4160 2 1 BA* BG** 0.9927 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 2 1 BA* BG** 0.9927 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 2 1 BA* BG** 0.9927 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 2 1 BA* BG** 0.9927 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 1 1 A1 TS01 0.6876 0.1714 0.0000 15 11.0000 10.1482 10.24612 0.9933 0.1566 40 4161 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9933 0.58914 40 4161 1 1 BA* BS** 0.7568 0.2577 -1.8255 15 7.3988 2.8343 8.0331 0.9977 0.3831 40 4162 1 2 A2 TS03 0.7568 0.2577 -1.8255 15 7.3988 2.8343 8.0331 0.9977 0.3831	40	3018	1	1	A1	TS01	0.5833	0.5169	-4.2692	15	9.3121	2.2222	4.9381	0.9963	0.2386
40 4086 1 2 A2 TS03 0.5464 0.5555 -2.6984 15 8.3427 1.9925 3.9701 0.9978 0.2386 40 4087 1 1 A1 TS01 1.7265 0.2555 -0.6188 15 13.4423 1.6242 2.6379 0.9999 0.1208 40 4087 1 2 BA* BS** 0.5161 0.2697 0.0000 15 16.0911 15.2534 232.6666 0.9319 0.9479 40 4088 1 2 BA* BS** 0.5991 0.2581 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 40 4155 1 1 A1 TS01 0.7895 0.5631 -3.6829 15 12.2987 2.4675 6.0887 0.9980 0.2006 40 4155 1 2 BA* BS** 0.9793 0.4536 -2.3316 15 13.0311 3.0449 9.2715 0.9985 0.2337 40 4157 1 1 BA* BS** 0.6765 0.5117 -0.6596 15 11.3167 3.7357 13.9554 0.9971 0.3301 40 4157 1 2 BA* BS** 0.6765 0.5117 -0.6596 15 11.3167 3.7357 13.9554 0.9971 0.3301 40 4158 1 1 BA* BS** 0.6908 0.3899 -1.3724 15 7.5637 3.3252 11.0572 0.9963 0.4396 40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9611 15 9.3646 3.3566 11.2667 0.9885 0.3584 40 4160 1 2 A2 TS02 1.0501 0.4262 -1.7440 15 13.0136 3.2212 10.3762 0.9987 0.2475 40 4160 1 2 BA* BG** 0.9827 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 1 2 A2 TS02 1.0501 0.4262 -1.7440 15 13.0136 3.2212 10.3762 0.9983 0.4396 40 4160 1 2 A2 TS02 1.0501 0.4262 -1.7440 15 13.0136 3.2212 10.3762 0.9987 0.2475 40 4160 1 2 A2 TS02 1.0501 0.4262 -1.7440 15 13.0136 3.2212 10.3762 0.9987 0.2475 40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9611 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 1 2 A2 TS02 1.0501 0.4262 -1.7440 15 13.0136 9.6157 92.4612 0.9973 0.1566 40 4160 1 1 A1 TS01 0.6876 0.1714 0.0000 15 11.0000 10.1482 102.9855 0.9814 0.9226 40 4161 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 1 A1 TS01 0.6876 0.1714 0.0000 15 11.0000 10.1482 102.9855 0.9814 0.9226 40 4161 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 1 A1 TS01 0.6876 0.1714 0.0000 15 11.0000 10.1482 102.9855 0.9814 0.9226 40 4161 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 1 BA* BS** 0.7598 0.5080 -0.8089 15 12.1212 3.8823 14.9177 0.9974 0.31	40	3018	1	2	A2	TS03	0.2960	0.0000	-2.1828	15	3.5950	1.9737	3.8954	0.9928	0.5490
40 4087 1 1 A1 TS01 1.7265 0.2555 -0.6188 15 13.4423 1.6242 2.6379 0.9999 0.1208 40 4087 1 2 BA* BS** 0.5161 0.2697 0.0000 15 16.0911 15.2534 232.6666 0.9319 0.9479 40 4088 1 2 BA* BS** 0.5991 0.2581 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 40 4155 1 1 A1 TS01 0.7895 0.5831 -3.6829 15 12.2987 2.4675 6.0887 0.9980 0.2006 40 4155 1 2 BA* BS** 0.9793 0.4536 -2.3316 15 13.0311 3.0449 9.2715 0.9985 0.2337 40 4157 1 1 BA* BS** 0.6765 0.5117 -0.6596 15 11.3167 3.7357 13.9554 0.9971 0.3301 40 4157 1 2 BA* BS** 0.6748 0.6605 -1.3037 15 12.5993 2.2571 5.0945 0.9988 0.1791 40 4158 1 1 BA* BS** 0.6912 0.5342 -1.9908 15 10.6815 3.6615 13.4066 0.9961 0.3428 40 4158 1 2 BA* BS** 0.6000 0.3899 -1.3724 15 7.5637 3.3252 11.0572 0.9963 0.4396 40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9611 15 9.3646 3.3566 11.2667 0.9885 0.3584 40 4160 1 1 BA* BG** 0.9827 0.3492 -0.0154 15 13.0136 3.2212 10.3762 0.9987 0.2475 40 4160 2 1 BA* BG** 0.9827 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 1 1 A1 TS01 0.6876 0.1714 0.0000 15 11.0000 10.1482 102.9855 0.9814 0.9226 40 4160 1 1 A1 TS01 0.6876 0.1714 0.0000 15 11.0000 10.1482 102.9855 0.9814 0.9226 40 4160 1 1 A1 TS01 0.6876 0.1714 0.0000 15 11.0000 10.1482 102.9855 0.9814 0.9226 40 4161 1 1 A1 TS01 0.6876 0.1714 0.0000 15 11.0000 10.1482 102.9855 0.9814 0.9226 40 4161 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 2 A2 TS03 0.7156 0.2577 -1.8255 15 7.3988 2.8343 8.0331 0.9977 0.3831	40	4086	1	1	A1	TS01	0.5422	0.6520	-4.0088	15	8.9576	2.6429	6.9847	0.9946	0.2950
40 4087 1 1 A1 TS01 1.7265 0.2555 -0.6188 15 13.4423 1.6242 2.6379 0.9999 0.1208 40 4087 1 2 BA* BS** 0.5161 0.2697 0.0000 15 16.0911 15.2534 232.6666 0.9319 0.9479 40 4088 1 2 BA* BS*** 0.5991 0.2581 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 40 4155 1 1 A1 TS01 0.7895 0.5631 -3.6829 15 12.2987 2.4675 6.0887 0.9980 0.2006 40 4155 1 2 BA* BS*** 0.9793 0.4536 -2.3316 15 13.0311 3.0449 9.2715 0.9985 0.2337 40 4157 1 1 BA* BS*** 0.6748 0.6605 -1.3037 15 12.5993	40	4086	1	2	A2	TS03	0.5464	0.5555	-2.6984	15	8.3427	1.9925	3.9701	0.9978	0.2388
40 4087 1 2 BA* BS** 0.5161 0.2697 0.0000 15 16.0911 15.2534 232.6666 0.9319 0.9479 40 4088 1 2 BA* BS** 0.5991 0.2581 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 40 4155 1 1 A1 TS01 0.7895 0.5631 -3.6829 15 12.2987 2.4675 6.0887 0.9980 0.2066 40 4155 1 2 BA* BS** 0.6765 0.5117 -0.6596 15 11.3167 3.7357 13.9554 0.9971 0.3301 40 4157 1 2 BA* BS** 0.6765 0.5117 -0.6596 15 11.3167 3.7357 13.9554 0.9971 0.3301 40 4158 1 1 BA* BS** 0.6912 0.5342 -1.9908 15 10.6815	40	4087	1	1	A1	TS01	1.7265	0.2555	-0.6188	15					
40 4088 1 2 BA* BS** 0.5991 0.2581 -1.9140 15 6.3004 2.2542 5.0814 0.9978 0.3578 40 4155 1 1 A1 TS01 0.7895 0.5631 -3.6829 15 12.2987 2.4675 6.0887 0.9980 0.2006 40 4155 1 2 BA* BS** 0.9793 0.4536 -2.3316 15 13.0311 3.0449 9.2715 0.9985 0.2337 40 4157 1 1 BA* BS** 0.6765 0.5117 -0.6596 15 11.3167 3.7357 13.9554 0.9971 0.3301 40 4157 1 2 BA* BS** 0.6748 0.6605 -1.3037 15 12.5993 2.2571 5.0945 0.9988 0.1791 40 4158 1 1 BA* BS** 0.6912 0.5342 -1.9908 15 10.6815 3.6615 13.4066 0.9961 0.3428 40 4158 1 2 BA* BS** 0.6080 0.3899 -1.3724 15 7.5637 3.3252 11.0572 0.9963 0.4396 40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9611 15 9.3646 3.3566 11.2667 0.9885 0.3584 40 4160 1 2 A2 TS02 1.0501 0.4262 -1.7440 15 13.0136 3.2212 10.3762 0.9987 0.2475 40 4160 2 1 BA* BG** 0.9827 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 2 2 BA* BG** 0.9216 0.5836 -0.0393 15 61.3965 9.6157 92.4612 0.9973 0.1566 40 4161 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 1 A1 TS01 0.6876 0.1714 0.0000 15 11.0000 10.1482 102.9855 0.9814 0.9226 40 4161 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 1 A1 TS01 1.2183 0.56652 -1.8572 15 18.4623 2.9331 8.6030 0.9992 0.1589 40 4162 1 1 BA* BS** 0.7598 0.5080 -0.8089 15 12.1212 3.8623 14.9177 0.9974 0.3186	40	4087	1	2											
40 4155 1 1 A1 TS01 0.7895 0.5631 -3.6829 15 12.2987 2.4675 6.0887 0.9980 0.2006 40 4155 1 2 BA* BS** 0.9793 0.4536 -2.3316 15 13.0311 3.0449 9.2715 0.9985 0.2337 40 4157 1 1 BA* BS** 0.6765 0.5117 -0.6596 15 11.3167 3.7357 13.9554 0.9971 0.3301 40 4157 1 2 BA* BS** 0.6748 0.6605 -1.3037 15 12.5993 2.2571 5.0945 0.9988 0.1791 40 4158 1 1 BA* BS** 0.6912 0.5342 -1.9908 15 10.6815 3.6615 13.4066 0.9961 0.3428 40 4158 1 2 BA* BS** 0.6080 0.3899 -1.3724 15 7.5637 3.3252 11.0572 0.9963 0.4396 40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9611 15 9.3646 3.3566 11.2667 0.9885 0.3584 40 4160 1 2 A2 TS02 1.0501 0.4282 -1.7440 15 13.0136 3.2212 10.3762 0.9987 0.2475 40 4160 2 1 BA* BG** 0.9827 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 2 2 BA* BG** 0.9216 0.5836 -0.0393 15 61.3965 9.6157 92.4612 0.9973 0.1566 40 4161 1 1 A1 TS01 0.6876 0.1714 0.0000 15 11.0000 10.1482 102.9855 0.9814 0.9226 40 4161 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 1 A1 TS01 1.2183 0.5652 -1.8572 15 18.4623 2.9331 8.6030 0.9997 0.3831 40 4164 1 1 BA* BS** 0.7598 0.5080 -0.8089 15 12.1212 3.8623 14.9177 0.9974 0.3186	40	4088	1												
40 4155 1 2 BA* BS** 0.9793 0.4536 -2.3316 15 13.0311 3.0449 9.2715 0.9985 0.2337 40 4157 1 1 BA* BS** 0.6765 0.5117 -0.6596 15 11.3167 3.7357 13.9554 0.9971 0.3301 40 4157 1 2 BA* BS** 0.6748 0.6605 -1.3037 15 12.5993 2.2571 5.0945 0.9988 0.1791 40 4158 1 1 BA* BS** 0.6912 0.5342 -1.9908 15 10.6815 3.6615 13.4066 0.9961 0.3428 40 4158 1 2 BA* BS** 0.6080 0.3899 -1.3724 15 7.5637 3.3252 11.0572 0.9963 0.4396 40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9611 15 9.3646 3.3566 11.2667 0.9885 0.3584 40 4160 1 2 A2 TS02 1.0501 0.4262 -1.7440 15 13.0136 3.2212 10.3762 0.9987 0.2475 40 4160 2 1 BA* BG** 0.9827 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 2 2 BA* BG** 0.9216 0.5836 -0.0393 15 61.3965 9.6157 92.4612 0.9973 0.1566 40 4161 1 1 A1 TS01 0.6876 0.1714 0.0000 15 11.0000 10.1482 102.9855 0.9814 0.9226 40 4161 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 1 A1 TS01 1.2183 0.5652 -1.8572 15 18.4623 2.9331 8.6030 0.9997 0.3831 40 4164 1 1 BA* BS** 0.7598 0.5080 -0.8089 15 12.1212 3.8623 14.9177 0.9974 0.3186															
40 4157 1 1 BA* BS** 0.6765 0.5117 -0.6596 15 11.3167 3.7357 13.9554 0.9971 0.3301 40 4157 1 2 BA* BS** 0.6748 0.6605 -1.3037 15 12.5993 2.2571 5.0945 0.9988 0.1791 40 4158 1 1 BA* BS** 0.6912 0.5342 -1.9908 15 10.6815 3.6615 13.4066 0.9961 0.3428 40 4158 1 2 BA* BS** 0.6080 0.3899 -1.3724 15 7.5637 3.3252 11.0572 0.9963 0.4396 40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9611 15 9.3646 3.3566 11.2667 0.9885 0.3584 40 4160 1 2 A2 TS02 1.0501 0.4262 -1.7440 15 13.0136 3.2212 10.3762 0.9987 0.2475 40 4160 2 1 BA* BG** 0.9827 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 2 2 BA* BG** 0.9216 0.5836 -0.0393 15 61.3965 9.6157 92.4612 0.9973 0.1566 40 4161 1 1 A1 TS01 0.6876 0.1714 0.0000 15 11.0000 10.1482 102.9855 0.9814 0.9226 40 4161 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 1 A1 TS01 1.2183 0.5652 -1.8572 15 18.4623 2.9331 8.6030 0.9992 0.1589 40 4164 1 1 BA* BS** 0.7598 0.5080 -0.8089 15 12.1212 3.8623 14.9177 0.9974 0.3186															
40 4157 1 2 BA* BS** 0.6748 0.6605 -1.3037 15 12.5993 2.2571 5.0945 0.9988 0.1791 40 4158 1 1 BA* BS** 0.6912 0.5342 -1.9908 15 10.6815 3.6615 13.4066 0.9961 0.3428 40 4158 1 2 BA* BS** 0.6080 0.3899 -1.3724 15 7.5637 3.3252 11.0572 0.9963 0.4396 40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9611 15 9.3646 3.3566 11.2667 0.9885 0.3564 40 4160 1 2 A2 TS02 1.0501 0.4262 -1.7440 15 13.0136 3.2212 10.3762 0.9987 0.2475 40 4160 2 1 BA* BG** 0.9827 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 2 2 BA* BG** 0.9216 0.5836 -0.0393 15 61.3965 9.6157 92.4612 0.9973 0.1566 40 4161 1 1 A1 TS01 0.6876 0.1714 0.0000 15 11.0000 10.1482 102.9855 0.9814 0.9226 40 4161 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 1 A1 TS01 1.2183 0.5652 -1.8572 15 18.4623 2.9331 8.6030 0.9992 0.1589 40 4164 1 1 BA* BS** 0.7598 0.5080 -0.8089 15 12.1212 3.8623 14.9177 0.9974 0.3186															
40 4158 1 1 BA* BS** 0.6912 0.5342 -1.9908 15 10.6815 3.6615 13.4066 0.9961 0.3428 40 4158 1 2 BA* BS** 0.6080 0.3899 -1.3724 15 7.5637 3.3252 11.0572 0.9963 0.4396 40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9611 15 9.3646 3.3566 11.2667 0.9885 0.3564 40 4160 1 2 A2 TS02 1.0501 0.4262 -1.7440 15 13.0136 3.2212 10.3762 0.9987 0.2475 40 4160 2 1 BA* BG** 0.9827 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 2 2 BA* BG** 0.9216 0.5836 -0.0393 15 61.3965 9.6157 92.4612 0.9973 0.1566 40 4161 1 1 A1 TS01 0.6876 0.1714 0.0000 15 11.0000 10.1482 102.9855 0.9814 0.9226 40 4161 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 1 A1 TS01 1.2183 0.5652 -1.8572 15 18.4623 2.9331 8.6030 0.9992 0.1589 40 4162 1 2 A2 TS03 0.7156 0.2577 -1.8255 15 7.3988 2.8343 8.0331 0.9977 0.3831 40 4164 1 1 BA* BS** 0.7598 0.5080 -0.8089 15 12.1212 3.8623 14.9177 0.9974 0.3186															
40 4158 1 2 BA* BS** 0.6080 0.3899 -1.3724 15 7.5637 3.3252 11.0572 0.9963 0.4396 40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9611 15 9.3646 3.3566 11.2667 0.9885 0.3584 40 4160 1 2 A2 TS02 1.0501 0.4262 -1.7440 15 13.0136 3.2212 10.3762 0.9987 0.2475 40 4160 2 1 BA* BG** 0.9827 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 2 2 BA* BG** 0.9216 0.5836 -0.0393 15 61.3965 9.6157 92.4612 0.9973 0.1566 40 4161 1 1 A1 TS01 0.6876 0.1714 0.0000 15 11.0000 10.1482 102.9855 0.9814 0.9226 40 4161 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 1 A1 TS01 1.2183 0.5652 -1.8572 15 18.4623 2.9331 8.6030 0.9992 0.1589 40 4164 1 1 BA* BS** 0.7598 0.5080 -0.8089 15 12.1212 3.8623 14.9177 0.9974 0.3186															
40 4160 1 1 A1 TS01 0.5848 0.3835 -5.9611 15 9.3646 3.3566 11.2667 0.9885 0.3584 40 4160 1 2 A2 TS02 1.0501 0.4262 -1.7440 15 13.0136 3.2212 10.3762 0.9987 0.2475 40 4160 2 1 BA* BG** 0.9827 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 2 2 BA* BG** 0.9216 0.5836 -0.0393 15 61.3965 9.6157 92.4612 0.9973 0.1566 40 4161 1 1 A1 TS01 0.6876 0.1714 0.0000 15 11.0000 10.1482 102.9855 0.9814 0.9226 40 4161 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 1 A1 TS01 1.2183 0.5652 -1.8572 15 18.4623 2.9331 8.6030 0.9992 0.1589 40 4162 1 2 A2 TS03 0.7156 0.2577 -1.8255 15 7.3988 2.8343 8.0331 0.9977 0.3831 40 4164 1 1 BA* BS** 0.7598 0.5080 -0.8089 15 12.1212 3.8623 14.9177 0.9974 0.3186															
40 4160 1 2 A2 TS02 1.0501 0.4262 -1.7440 15 13.0136 3.2212 10.3762 0.9987 0.2475 40 4160 2 1 BA* BG** 0.9827 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 2 2 BA* BG** 0.9216 0.5836 -0.0393 15 61.3965 9.6157 92.4612 0.9973 0.1566 40 4161 1 1 A1 TS01 0.6876 0.1714 0.0000 15 11.0000 10.1482 102.9855 0.9814 0.9226 40 4161 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 1 A1 TS01 1.2183 0.5652 -1.8572 15 18.4623 2															
40 4160 2 1 BA* BG** 0.9827 0.3492 -0.0154 15 32.0665 7.2453 52.4938 0.9977 0.2259 40 4160 2 2 BA* BG** 0.9216 0.5836 -0.0393 15 61.3965 9.6157 92.4612 0.9973 0.1566 40 4161 1 1 A1 TS01 0.6876 0.1714 0.0000 15 11.0000 10.1482 102.9855 0.9814 0.9226 40 4161 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 1 A1 TS01 1.2183 0.5652 -1.8572 15 18.4623 2.9331 8.6030 0.9992 0.1589 40 4162 1 2 A2 TS03 0.7156 0.2577 -1.8255 15 7.3988 2.8															
40 4160 2 2 BA* BG** 0.9216 0.5836 -0.0393 15 61.3965 9.6157 92.4612 0.9973 0.1566 40 4161 1 1 A1 TS01 0.6876 0.1714 0.0000 15 11.0000 10.1482 102.9855 0.9814 0.9226 40 4161 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 1 A1 TS01 1.2183 0.5652 -1.8572 15 18.4623 2.9331 8.6030 0.9992 0.1589 40 4162 1 2 A2 TS03 0.7156 0.2577 -1.8255 15 7.3988 2.8343 8.0331 0.9977 0.3831 40 4164 1 1 BA* BS** 0.7598 0.5080 -0.8089 15 12.1212 3.86															
40 4161 1 1 A1 TS01 0.6876 0.1714 0.0000 15 11.0000 10.1482 102.9855 0.9814 0.9226 40 4161 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 1 A1 TS01 1.2183 0.5652 -1.8572 15 18.4623 2.9331 8.6030 0.9992 0.1589 40 4162 1 2 A2 TS03 0.7156 0.2577 -1.8255 15 7.3988 2.8343 8.0331 0.9977 0.3831 40 4164 1 1 BA* BS** 0.7598 0.5080 -0.8089 15 12.1212 3.8623 14.9177 0.9974 0.3186															
40 4161 1 2 A2 TS03 0.5642 0.1977 -0.0065 15 8.8452 7.8870 62.2048 0.9833 0.8917 40 4162 1 1 A1 TS01 1.2183 0.5652 -1.8572 15 18.4623 2.9331 8.6030 0.9992 0.1589 40 4162 1 2 A2 TS03 0.7156 0.2577 -1.8255 15 7.3988 2.8343 8.0331 0.9977 0.3831 40 4164 1 1 BA* BS** 0.7598 0.5080 -0.8089 15 12.1212 3.8623 14.9177 0.9974 0.3186															
40 4162 1 1 A1 TS01 1.2183 0.5652 -1.8572 15 18.4623 2.9331 8.6030 0.9992 0.1589 40 4162 1 2 A2 TS03 0.7156 0.2577 -1.8255 15 7.3988 2.8343 8.0331 0.9977 0.3831 40 4164 1 1 BA* BS** 0.7598 0.5080 -0.8089 15 12.1212 3.8623 14.9177 0.9974 0.3186															
40 4162 1 2 A2 TS03 0.7156 0.2577 -1.8255 15 7.3988 2.8343 8.0331 0.9977 0.3831 40 4164 1 1 BA* BS** 0.7598 0.5080 -0.8089 15 12.1212 3.8623 14.9177 0.9974 0.3186															0.8917
40 4164 1 1 BA* BS** 0.7598 0.5080 -0.8089 15 12.1212 3.8623 14.9177 0.9974 0.3186			1				1.2183	0.5652	-1.8572	15	18.4623	2.9331	8.6030	0.9992	0.1589
		4162				TS03	0.7156	0.2577		15	7.3988	2.8343	8.0331	0.9977	0.3831
40 4164 1 2 A2 T\$03 0.7977 0.6125 -1.1781 15 14.0655 2.1484 4.6156 0.9992 0.1527		4164					0.7598	0.5080	-0.8089	15	12.1212	3.8623	14.9177	0.9974	0.3186
	40	4164	1	2	A2	TS03	0.7977	0.6125	-1.1781	15	14.0655	2.1484	4.6156	0.9992	0.1527

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

State	SHRP	Layer	Test	Loc.	Sample				No.	Std				
Code	ID	No.	No.	No.	No.	k1	k2	k3	Points	Dev(M _R)	RMSE	MSE	R²	S _e /S _y
40	4166	1	1	BA*	BS**	0.6403	0.1545	0.0000	15	7.2230	6.2647	39.2470	0.9917	0.8673
40	4166	1	2	A2	TS03	0.7740	0.1165	-2.2322	15	8.4046	4.0599	16.4826	0.9957	0.4831
40	5021	1	2	A2	TS01	0.5350	0.0000	-0.6667	15	6.6961	6.3165	39.8978	0.9848	0.9433
40	6010	1	1	BA*	BS**	1.1617	0.2813	-1.0623	15	10.2850	3.1847	10.1424	0.9991	0.3096
40	6010		2	BA*	BS**	1.0072	0.2751	-0.6287	15	9.8899	5.3661	28.7954	0.9971	0.5426
40	7024	1	1	A1	TS01	0.6482	0.4314	-2.7779	15	9.1781	3.3174	11.0053	0.9953	0.3614
40	7024	1	2	A2 A1	TS03	0.7882 0.1994	0.1866 0.5385	-1.5423	15 15	9.4466	6.8567	47.0143	0.9897	0.7258
41	2002	1	2	A1 A2	TS03	0.1994	0.5365	-2.2799 -2.0941	15	3.1045	1.3327	1.7760	0.9932	0.4293
41	5005	1	1	A1	TS01	0.3939	0.4940	-2.2655	15	5.5609 5.3426	1.7347 1.1851	3.0092 1.4045	0.9971	0.2218
41	5005	1	2	A2	TS03	0.5785	0.1770	-2.9179	15	7.1401	0.9754	0.9513	0.9994	0.1366
41	5006	1	1	A1	TS01	0.5503	0.2553	-2.4153	15	6.2731	1.1852	1.4048	0.9992	0.1889
41	5006	1	1	BA*	BS**	0.6064	0.1979	-0.8382	15	3.9976	1.2551	1.5752	0.9995	0.3140
41	5006	<u> </u>	2	BA*	BS**	0.2850	0.7409	-2.7081	15	5.3247	1.4871	2.2114	0.9956	0.2793
41	5006	2	1	BA*	BG**	1.0135	0.1741	0.0000	15	14.1320	1.6635	2.7673	0.9998	0.1177
41	5006		2	BA*	BG**	1.0411	0.1936	0.0000	15	16.4050	1.2461	1.5528	0.9999	0.0760
41	5006	3	2	BA*	BG**	0.5314	0.5185	-0.1905	15	25.6261	4.5654	20.8425	0.9976	0.1782
41	5008	1	1	BA*	BS**	0.8025	0.2465	-0.8242	15	6.1389	1.6796	2.8210	0.9995	0.2736
41	5008	1	2	BA*	BS**	1.0517	0.1759	-0.1054	15	6.4417	1.1887	1.4129	0.9999	0.1845
41	5022	1	2	BA6	BS16	0.9010	0.2600	-1.0831	15	7.3860	1.5785	2.4915	0.9996	0.2137
41	6011	1	1	A1	TS01	0.5741	0.2144	-1.1075	15	4.1952	0.7865	0.6185	0.9998	0.1875
41	6011	1	2	A2	TS03	0.4429	0.2012	-2.0200	15	4.3665	0.6748	0.4554	0.9996	0.1545
41	7018	1	1	BA*	BS**	0.6390	0.1580	-2.3917	15	7.1201	0.7665	0.5875	0.9997	0.1076
41	7018	1	2	BA*	BS**	0.9140	0.1529	-0.0717	15	5.1195	1.5882	2.5225	0.9997	0.3102
41	7019	1	1	BA*	BS**	0.8883	0.1998	0.0000	15	8.9560	6.1635	37.9882	0.9959	0.6882
41	7019	1	2	BA*	BS**	1.0430	0.2763	0.0000	15	11.7100	4.9578	24.5801	0.9981	0.4234
41	7025	1	2	A2	TS05	0.7142	0.2945	-4.7190	15	11.2517	2.2405	5.0198	0.9970	0.1991
42	0603	1	2	B5	BS05	0.8429	0.2252	0.0000	15	7.9144	3.8112	14.5250	0.9983	0.4815
42	0608	1	2	BA6	BS06	0.7779	0.2264	-0.5420	15	5.8285	2.4156	5.8350	0.9990	0.4144
42	1597	1	1	BA1	BS01	1.2179	0.2240	-1.3571	15	11.1283	5.2052	27.0944	0.9976	0.4677
42	1597	1	2	TP	BS55	0.9290	0.2135	0.0000	15	16.1797	14.4547	208.9396	0.9797	0.8934
42	1598	1	2	BA6	BS06	0.8814	0.2810	0.0000	15	30.5068	29.1444	849.3943	0.9162	0.9553
42	1599	1	2	BA* TP	BS**	1.1976	0.2726	-1.4671	15	11.2610	3.5947	12.9217	0.9988	0.3192
42 42	1599 1605	1	1	BA2	BS55 BS02	0.8779 1.1296	0.3119 0.2423	-1.6200 -2.7411	15 15	9.2788	3.2764	10.7350	0.9981	0.3531
42	1605	1	2	TP	BS55	0.7416	0.2423	-3.6869	14	14.5193 11.3205	4.8309 4.9672	23.3378 24.6734	0.9965 0.9889	0.3327
42	1606	1	-1	BA2	BS02	1.0593	0.0861	-0.1187	15	8.2531	7.7058	59.3792	0.9869	0.4386
42	1606	<u> </u>	2	BA5	B\$04	1.3631	0.2563	0.0000	15	13.9993	5.7341	32.8805	0.9985	0.4096
42	1608	<u> </u>	1	BA1	BS01	1.1241	0.2083	-0.5573	15	8.1766	4.0561	16.4521	0.9987	0.4961
42	1613	1	1	BA*	BS**	0.6696	0.6107	-2.6245	15	11.0678	3.2580	10.6148	0.9961	0.4901
42	1613	1	2	BA*	BS**	0.7219	0.4706	-2.2170	14	10.8923	4.4822	20.0902	0.9940	0.4115
42	1613	2	1	BA1	BG01	0.8608	0.7675	-0.4527	15	67.4814	8.4253	70.9859	0.9980	0.1249
42	1614	1	1	BA*	BS**	1.1678	0.3567	-1.9054	14	14.4923	5.3291	28.3991	0.9970	0.3677
42	1614	1	2	BA*	BS**	1.4264	0.2147	-1.4519	15	12.0917	3.1325	9.8123	0.9993	0.2591
42	1614	2	1	BA*	BG**	0.6597	0.6437	-0.2470	15	43.8404	3.1860	10.1506	0.9994	0.0727
42	1617	1	1	BA*	BS**	1.7221	0.4466	-2.7154	15	24.0327	4.9292	24.2971	0.9985	0.2051
42	1617	1	2	BA*	BS**	1.0380	0.3248	-3.0124	15	14.5857	5.1336	26.3537	0.9950	0.3520
42	1618	1	1	BA*	BS**	0.8466	0.0940	0.0000	15	15.7954	15.5357	241.3591	0.9710	0.9836
42	1618	2	1	BA*	BG**	0.7340	0.7223	-0.4796	14	51.9994	6.8455	46.8612	0.9979	0.1316
42	1623	_1_	1	BA*	BS**	1.1494	0.3166	-1.3721	15	11.2787	2.9156	8.5008	0.9992	0.2585
42	1623	1	2	BA5	BS05	0.8315	0.4185	-2.4920	15	11.2998	3.8210	14.5999	0.9964	0.3381
42	1627	1	1	BA*	BS**	1.1344	0.2458	-0.7043	15	9.5244	4.5863	21.0340	0.9983	0.4815
42	1627	1	2	BA*	BS**	1.0536	0.4409	-2.0805	15	14.1108	4.6979	22.0705	0.9970	0.3329
42	1690	1	1	BA*	BS**	1.1688	0.2724	0.0000	15	14.9389	9.5433	91.0754	0.9944	0.6388
42	1690	1	2	BA*	BS**	0.7380	0.3412	-0.9247	15	7.9361	3.3480	11.2092	0.9977	0.4219
42	3044	1	1	BA1	BS01	1.4695	0.4205	-3.1776	15	21.3035	4.6973	22.0645	0.9979	0.2205

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

State Code	SHRP	Layer No.	Test No.	Loc. No.	Sample No.	k1	k2	k3	No. Points	Std Dev(M _R)	RMSE	MSE	R²	S _a /S _v
42	5020	1	2	BA5	BS04	0.8639	0.5063	-1.0841	15	12.5725	2.1072	4.4404	0.9994	0.1676
42	7025	1	1	BA*	BS**	0.8528	0.3003	-2.2559	15	12.2311	5.5955	31.3100	0.9931	0.4575
42	7025	1	2	BA*	BS**	0.8620	0.4199	-2.3223	15	14.6346	5.3154	28.2534	0.9942	0.3632
42	7025	2	2	BA*	BG**	1.2372	0.5122	-0.4399	15	47.7571	9.7326	94.7229	0.9975	0.2038
42	7023	1	1	BA*	BS**	1.2869	0.2822	-1.3211	15	12.1342	4.1306	17.0618	0.9987	0.3404
42	7037	1	2	BA*	BS**	1.0692	0.2131		15	8.6850	4.8633	23.6512	0.9977	0.5600
42	7037	2	1	BA3	BG03	0.8159	0.5241	-0.8617 0.0000	15	47.6005	7.7802	60.5310	0.9975	0.3600
42	7037	2	2	BA5	BG05	1.3511	0.5241	-0.4827	15	38.1261	10.7165	114.8433	0.9967	0.1034
42	9027	1	2	BA*	BS**	1.1214	0.4294	-0.7099	15	7.8782	4.8097	23.1334	0.9980	0.6105
45	1008	1	1	A1	TS01	0.9584	0.1738	-2.6292	15	14.5498	2.1731	4.7222	0.9991	0.1494
45	1008	1	2	A2	TS03	0.9364	0.3623	0.0000	15	10.4462	8.7071	75.8142	0.9829	0.8335
45	1008	2	1	BA*	BG**	0.5487	0.7521	-0.1001	15	53.7453	3.4792	12.1046	0.9994	0.0647
45	1008	2	2	TP1	BG55	0.8435		-0.1001	15	69.2724	4.6863	21.9612	0.9994	0.0677
45		1	1		BS**		0.7367				2.7876	7.7706	0.9990	0.2046
	1011	1	2	BA*	BS**	0.8791	0.5004	-0.7119	15	13.6214		7.7708	0.9990	0.2194
45	1011					0.8041	0.4662	-0.4398	15	12.4319	2.7275			
45	1011	2	1	BA*	BG**	0.8686	0.6486	0.0000	15	74.1676	23.4012	547.6161 225.7375	0.9862	0.3155
45 45	1011	2	2	BA*	BG**	1.2357	0.5509	0.0000	15	77.7528	15.0246		0.9963	0.1932
45 45	1024	1	1	A1	TS01	0.9860	0.3844	-2.0542	15	12.5254	4.7007	22.0968	0.9966	0.3753
45	1024	1	2	TP1	BS55	1.0778	0.2189	-2.2483	15	12.5007	5.0386	25.3870	0.9963	0.4031
45	1024	2	1	BA*	BG**	0.5058	0.7978	-0.0066	15	59.2241	4.5845	21.0178	0.9989	0.0774
45	1024	2	2	TP1	BG55	0.4304	0.8535	-0.0496	15	56.2340	2.7222	7.4102	0.9995	0.0484
45	1025	1	1	A1	TS01	0.6298	0.4025	0.0000	15	9.8305	3.0734	9.4456	0.9981	0.3126
45	1025	1	2	A2	TS03	0.8716	0.4924	-5.2213	15	14.2812	3.3376	11.1398	0.9954	0.2337
45	1025	2	1	BA*	BG**	0.6765	0.6035	-0.0609	15	46.7493	2.7040	7.3115	0.9996	0.0578
45	1025	2	2	TP1	BG**	0.8929	0.6805	-0.1293	15	71.4322	4.1134	16.9201	0.9996	0.0576
45	3012	1	1	A1	TS01	0.5775	0.3749	-3.0666	15	8.2779	2.7739	7.6948	0.9953	0.3351
45	3012	1	2	A2	TS03	0.5603	0.4095	-4.3981	15	9.0701	3.0086	9.0518	0.9921	0.3317
45	5017	1	1	A1	TS01	0.8494	0.4346	-0.7402	15	11.7830	3.8878	15.1153	0.9979	0.3300
45	5017	1	2	BA*	BS**	0.7194	0.5896	0.0000	14	16.9997	5.2463	27.5236	0.9961	0.3086
45	5034	1	1	A1	TS01	0.9504	0.5001	-1.5595	15	13.9786	5.3898	29.0500	0.9959	0.3856
45	5034	1	2	A2	TS03	0.7599	0.4244	-1.8524	15	9.7174	2.9941	8.9644	0.9978	0.3081
45	5035	1	1	A1	TS01	0.6324	0.7250	-1.3138	15	13.1283	2.5475	6.4899	0.9983	0.1940
45	5035	1 '	2	A2	TS03	0.8516	0.3949	-0.4930	15	11.6157	4.5648	20.8377	0.9973	0.3930
45	7019	1	1	A1	TS01	0.8309	0.3925	-1.7864	15	10.6064	4.5556	20.7534	0.9958	0.4295
45	7019	1	2	A2	TS03	0.4102	0.6064	-1.0110	15	7.4814	1.8731	3.5086	0.9979	0.2504
46	0804	1	3	A5	TS10	1.0014	0.1792	-0.5826	15	5.6290	1.2340	1.5228	0.9998	0.2192
46	0804	1	3	A6	TS12	1.0125	0.2113	-1.1664	14	7.4543	1.4291	2.0425	0.9998	0.1917
46	3009	1	1	A1	TS02	1.5606	0.2006	-1.1031	15	10.9052	1.2399	1.5373	0.9999	0.1137
46	3009	2	1	BA*	BG**	0.8673	0.5690	-0.2010	15	49.3638	16.8450	283.7539	0.9892	0.3412
46	3009	2	2	TP*	BG**	0.6031	0.7497	-0.0289	15	60.9481	5.8817	34.5944	0.9986	0.0965
46	3010	1	1	BA*	BS**	0.9322	0.3758	-2.7217	15	12.0752	2.3515	5.5293	0.9988	0.1947
46	3010	1	2	TP*	BS**	1.0380		-3.1172		14.6385	2.8377	8.0523	0.9985	
46	3010	2	1	BA*	BG**	0.5338	0.7779	-0.1845	15	51.6920	5.5391	30.6814	0.9983	0.1072
46	3010	2	2	TP*	BG**	0.5876	0.6184	-0.0587	15	41.9237	8.9799	80.6390	0.9948	0.2142
46	3012	1	2	TP*	BS**	1.2348	0.2422	-2.5427	15	14.5183	1.8950	3.5911	0.9996	0.1305
46	3012	2	2	TP*	BG**	0.8957	0.5861	0.0000	15	61.4029	8.3851	70.3101	0.9980	0.1366
46	3013	1	1	BA*	BS**	0.8050	0.4527	-2.8605	15	11.3293	2.3970	5.7457	0.9983	0.2116
46	3013	1	2	TP*	BS**	0.4566	0.9315	-2.9497	15	10.2363	3.2072	10.2859	0.9923	0.3133
46	3013	2	1	BA*	BG**	0.8500	0.5165	0.0000	15	48.3228	9.9216	98.4390	0.9962	0.2053
46	3013	2	2	TP*	BG**	0.8512	0.5507	-0.0674	15	50.3168	11.1993	125.4248	0.9954	0.2226
46	3052	1	1	A1	TS01	0.8446	0.1040	-1.6726	15	7.2552	0.3888	0.1512	1.0000	0.0536
46	3052	1	2	A2	TS03	0.9241	0.2112	-1.8830	15	8.9443	1.6171	2.6149	0.9995	0.1808
46	3052	2	1	BA*	BG**	0.7146	0.7893	-0.4298	15	59.4961	12.6767	160.6987	0.9939	0.2131
46	3052	2	2	TP*	BG**	0.6374	0.8206	-0.3821	15	59.1952	11.2968	127.6171	0.9946	0.1908
46	3053	1	1	TP*	BS56	1.7962	0.3681	0.0000	15	25.0367	6.0484	36.5830	0.9991	0.2416
46	3053	1	2	TP*	BS55	1.2268	0.4501	-2.1052	14	15.7522	1.4936	2.2308	0.9998	0.0948

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

			1						N	211				
State	SHRP	Layer No.	Test No.	Loc. No.	Sample No.	k1	k2	k3	No. Points	Std Dev(M _R)	RMSE	MSE	R²	S _e /S _v
Code											-			
46	3053	2	1	TP*	BG**	0.8185	0.7113	0.0000	15	77.8152	3.4433	11.8566	0.9997	0.0443
46	3053	2	2	TP*	BG55	1.1884	0.5823	-0.2036	14	64.9293	6.3667	40.5343	0.9991	0.0981
46	5020	1	1	BA*	BS**	2.7055	0.4640	-0.8565	12	35.1499	3.1575	9.9701	0.9999	0.0898
46	5020	1	2	TP*	BS**	1.5206	0.6009	-1.0997	12	23.2240	3.4530	11.9230	0.9995	0.1487
46	5025	1	1	A1	TS01	0.8830	0.1689	-2.5597	15	10.2432	0.6086	0.3704	0.9999	0.0594
46	5025	1	2	A2	TS03	0.5766	0.1952	-1.9920	15	5.6501	0.7813	0.6104	0.9997	0.1383
46	5025	2	1	BA*	BG**	0.9986	0.5352	-0.1822	14	48.4778	5.0833	25.8399	0.9991	0.1049
46	5025	2	2	TP*	BG**	0.5190	0.7112	-0.1280	15	44.2861	6.6796	44.6170	0.9969	0.1508
46	5040	1	1	A1	TS01	0.7909	0.2828	-3.0264	15	10.2181	0.8014	0.6423	0.9998	0.0784
46	5040	1	2	TP*	BS**	0.7266	0.3868	-2.9324	15	9.8406	1.8869	3.5602	0.9987	0.1917
46	5040	2	1	BA*	BG**	0.6632	0.6993	0.0000	15	60.6216	5.1603	26.6284	0.9990	0.0851
46	5040	2	2	TP*	BG**	0.5935	0.7513	-0.0979	15	57.3438	4.4212	19.5467	0.9991	0.0771
46	5040	3	1	BA*	BG**	0.6328	0.7042	0.0000	15	58.7378	3.1279	9.7837	0.9996	0.0533
46	5040	3	2	TP*	BG**	0.5499	0.7878	-0.2430	14	48.8398	5.3293	28.4011	0.9983	0.1091
46	6600	1	ī	TP1	BS55	1.1863	0.2317	-0.5790	15	8.3740	0.9404	0.8844	0.9999	0.1123
46	6600	1	2	TP2	BS56	1.0023	0.1514	-1.3986	14	7.8296	1.0442	1.0904	0.9999	0.1334
46	7049	1	1	A1	TS01	1.5136	0.1861	-1.2292	15	10.9340	1.3506	1.8242	0.9999	0.1235
46	7049		2	TP1	BS**	0.8353	0.1960	-1.7720	15	7.5593	0.7829	0.6129	0.9999	0.1230
	7049	2	1	BA*	BG**	0.8353	0.1960	-0.1306	15	45.9112	8.3765	70.1656	0.9957	0.1036
46														
46	7049	2	2	TP*	BG**	0.6955	0.6255	-0.3226	15	41.5335	7.9110	62.5833	0.9964	0.1905
46	9106	1	1	BA*	BS**	1.1870	0.2524	-0.6165	15	9.0984	1.9959	3.9837	0.9997	0.2194
46	9106	1	2	A2	TS04	1.0458	0.1937	-1.6813	15	9.1558	0.9413	0.8860	0.9999	0.1028
46	9106	2	2	TP*	BG**	0.5238	0.7802	-0.1904	14	51.4747	6.8047	46.3046	0.9974	0.1322
46	9106	2	1	BA*	BG**	1.8358	0.3683	-0.5697	15	36.7206	4.5272	20.4955	0.9996	0.1233
46	9197	1	1	BA*	BS**	1.4855	0.2598	-0.7724	15	11.5107	1.0718	1.1488	0.9999	0.0931
46	9197	2	1	BA*	BG**	0.7879	0.6616	-0.0875	15	61.4780	4.2921	18.4225	0.9994	0.0698
46	9197	2	2	TP*	BG**	1.0141	0.5245	-0.1141	15	53.3287	3.6552	13.3603	0.9996	0.0685
46	9197	3	1	BA*	BG**	0.9735	0.5689	-0.2246	15	53.2131	5.0722	25.7276	0.9992	0.0953
46	9197	3	2	TP*	BG**	0.8925	0.5091	0.0000	15	49.3730	4.7788	22.8370	0.9992	0.0968
47	1023	1	1	A1	TS01	1.0786	0.2218	-3.0252	15	13.8537	2.1721	4.7179	0.9992	0.1568
47	1023	1	2	A2	TS03	1.2949	0.3683	-3.3139	15	18.9807	6.8685	47.1759	0.9939	0.3619
47	1023	2	2	BA*	BG**	0.8648	0.6731	0.0000	15	77.8210	24.1529	583.3605	0.9860	0.3104
47	1028	1	1	A1	TS01	1.2481	0.2578	-1.5370	15	12.3083	5.3024	28.1152	0.9976	0.4308
47	1028	1	2	A2	TS03	0.8043	0.0949	-2.3105	15	9.0333	2.7403	7.5091	0.9980	0.3034
47	1028	2	1	BA*	BG**	1.1137	0.6494	0.0000	15	91.8633	10.7345	115.2304	0.9982	0.1169
47	1028	2	2	TP1	BG55	0.9327	0.7073	0.0000	15	88.5205	6.8098	46.3732	0.9991	0.0769
47	1029	1	1	BA	BS**	0.8849	0.4230	-2.1874	15	11.8374	4.9107	24.1146	0.9952	0.4148
47	1029	1	2	TP1	BS55	1.4501	0.2150	-1.2842	15	14.3676	8.7824	77.1311	0.9953	0.6113
47	1029	2	1	BA*	BG**	0.7273	0.8019	-0.0465	15	84.0687	5.7557	33.1284	0.9992	0.0685
	1029	2	2	TP1	BG55	1.0711	0.5600	-0.0465		63.9161	10.5702	111.7286	0.9974	0.0665
47									15					0.1934
47	2001		1	A1	TS01	0.7135	0.3533	-3.6649	15	10.2850	1.9889	3.9558	0.9982	
47	2001	1	2	A2	TS03	0.9409	0.3478	-3.0080	15	12.7809	3.8818	15.0685		0.3037
47	2008	1	1	A1	TS01	0.8779	0.5949	-3.0326	15	14.5350	4.7821	22.8686	0.9945	0.3290
47	2008	1	2	A2	TS03	0.7039	0.1426	-1.4181	15	7.5574	5.3151	28.2505	0.9924	0.7033
47	3075	1	2	TP1	BS55	0.8884	0.3764	-1.6948	15	10.2725	2.9924	8.9542	0.9984	0.2913
47	3075	2	2	TP1	BG55	0.6575	0.8543	0.0000	15	87.4282	6.0281	36.3380	0.9991	0.0689
47	3101	1	1	A1	TS01	0.7853	0.1677	0.0000	15	12.8767	11.9530	142.8747	0.9803	0.9283
47	3101	1	2	A2	TS03	0.9733	0.0706	-3.1421	15	14.5104	5.9779	35.7349	0.9917	0.4120
47	3101	2	1	BA*	BG**	1.2076	0.5647	-0.1090	15	71.6649	7.9968	63.9488	0.9988	0.1116
47	3101	2	2	TP1	BG55	1.8474	0.5231	-0.2039	15	90.9057	24.5441	602.4151	0.9943	0.2700
47	3104	11	1	A1	TS01	0.8583	0.3951	-2.5626	15	11.4247	3.5042	12.2792	0.9971	0.3067
47	3104	1	2	A2	TS03	1.0671	0.7672	-3.6486	15	19.6622	3.4665	12.0164	0.9979	0.1763
47	3104	2	1	BA*	BG**	1.0306	0.6849	0.0000	15	118.1427	78.0074	6085.1500	0.9052	0.6603
47	3104	2	2	TP1	BG55	0.7363	0.7146	0.0000	15	70.9373	10.2498	105.0592	0.9969	0.1445
47	3108	1	1	A1	TS01	0.6470	0.4496	-2.0586	15	8.7325	2.7688	7.6660	0.9973	0.3171
47	3108	1	2	TP1	BS55	0.7829	0.0000	-3.3939	15	12.4377	5.1447	26.4681	0.9899	0.4136

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

6444	GUED	1	T		0				Na	014				
State Code	SHRP	Layer No.	Test No.	Loc. No.	Sample No.	k1	k2	k3	No. Points	Std Dev(M _R)	RMSE	MSE	R²	S _e /S _v
47	3108	2	1	BA*	BG**	0.7518	0.8033	-0.1174	15	82.3921	3.3388	11.1474	0.9997	0.0405
47	3108	2	2	TP1	BG**	1.1590	0.6200	0.0000	15	87.5784	8.8720	78.7129	0.9988	0.1013
47	3109	1	1	A1	TS01	0.8278	0.3696	-3.5625	15	11.8201	2.9844	8.9068	0.9971	0.2525
47	3109	1	2	TP1	BS55	0.8609	0.0000	-1.9870	15	11.6292	7.3989	54.7442	0.9880	0.6362
47	3109	2	2	TP1	BG55	0.7034	0.9260	-0.1367	15	100.6816	3.0394	9.2379	0.9998	0.0302
	_	1			TS01	1.0502	0.9200	-3.1042	15	14.4364	5.4579	29.7884	0.9943	0.3781
47	3110	2	1	A1							6.5525	42.9347	0.9993	0.0683
47	3110		2	TP1	BG55	0.9401	0.7373	-0.0074	15	95.8770				
47	6015	1	1	A1	TS01	0.6318	0.5032	-3.4845	15	9.6273	2.6672	7.1137	0.9963	0.2770
47	6015	1	2	A2	TS03	0.5653	0.4175	-2.0241	15	7.4948	2.9248	8.5545	0.9960	0.3902
47	6015	2	1	BA*	BG**	0.8159	0.7663	-0.1549	15	79.6900	5.2476	27.5375	0.9993	0.0659
47	6015	2	2	TP1	BG55	1.1750	0.5796	0.0000	15	81.5816	8.9494	80.0916	0.9986	0.1097
47	6022	1	1	A1	TS01	0.8717	0.3258	-1.6146	15	10.0830	4.8007	23.0465	0.9959	0.4761
47	6022	1	2	A2	TS03	0.7641	0.4143	-2.3112	15	10.0105	3.2069	10.2841	0.9971	0.3204
47	6022	2	2	TP1	BG55	1.1636	0.6405	0.0000	15	93.6808	8.1064	65.7136	0.9990	0.0865
47	9024	1	1	BA*	BG**	0.7471	0.9837	-0.3424	15	107.1057	7.8765	62.0396	0.9988	0.0735
47	9024	1	2	TP1	BG55	1.1186	0.5635	0.0000	15	73.0364	6.8620	47.0864	0.9991	0.0940
47	9025	2	1	BA*	BG**	0.6103	0.6752	0.0000	15	54.4923	14.4041	207.4771	0.9900	0.2643
47	9025	2	2	TP1	BG55	1.2069	0.5885	-0.0494	15	81.7582	9.9364	98.7320	0.9984	0.1215
48	0001	1	1	BA*	BS**	1.1825	0.1390	-0.7944	15	6.3343	1.8259	3.3341	0.9997	0.2883
48	0001	1	2	TP1	BS55	2.4171	0.4522	-2.1555	15	36.0592	18.5955	345.7918	0.9909	0.5157
48	0001	2	1	BA⁺	BG**	1.2829	0.5166	0.0000	15	73.5065	13.5510	183.6289	0.9969	0.1844
48	0001	2	2	TP1	BG55	1.5222	0.6143	-0.1842	15	97.9238	14.9166	222.5048	0.9976	0.1523
48	0113	1	2	B7	BS07	0.5169	0.5114	0.0000	15	10.0631	2.6437	6.9890	0.9980	0.2627
48	0116	1	2	B10	BS10	0.5240	0.5196	0.0000	15	10.4722	3.0734	9.4456	0.9974	0.2935
48	0117	1	2	B8	BS08	0.5169	0.5384	0.0000	15	10.5978	2.4509	6.0069	0.9983	0.2313
48	0119	1	2	В3	BS03	0.5116	0.5199	0.0000	15	10.1840	2.6951	7.2636	0.9979	0.2646
48	0121	1	2	B4	BS04	0.4944	0.5622	0.0000	15	10.6762	2.8146	7.9218	0.9976	0.2636
48	0123	1	2	B9	BS09	0.5120	0.4813	0.0000	15	9.2633	1.7556	3.0822	0.9991	0.1895
48	0801	1	1	B2	BS02	0.8722	0.1827	0.0000	15	6.9158	3.6900	13.6163	0.9985	0.5336
48	0801	1	2	B3	BS03	0.7152	0.1898	-0.1431	15	5.1111	2.3524	5.5338	0.9990	0.4603
48	0801	1	3	A5	TS09	0.6076	0.1794	-0.4282	15	4.1610	2.4970	6.2349	0.9983	0.6001
48	0801	3	2	B5	BG02	0.7867	0.2624	-0.5323	15	6.6812	2.4791	6.1460	0.9990	0.3711
48	0801	3	3	В6	BG03	0.8143	0.2526	-0.5981	15	6.6102	2.4686	6.0938	0.9991	0.3734
48	0802	1	1	B1	BS01	0.9765	0.2118	0.0000	15	10.5884	7.4231	55.1028	0.9951	0.7011
48	0802	1	3	A1	TS01	0.5835	0.1785	-0.9326	15	4.0036	1.7313	2.9974	0.9990	0.4324
48	0802	3	2	B4	BG01	0.7746	0.0000	0.0000	15	7.1301	7.1301	50.8381	0.9924	1.0000
48	1039	1	1	BA*	BS**	0.6196	0.2150	-1.8082	15	5.7130	1,1450	1.3111	0.9995	0.2004
48	1039	1	2	A2	TS03	0.8759	0.3008	-1.4755	15	8.3049	1.6820	2.8292	0.9995	0.2025
48	1039	3	1	BA*	BG**	0.8631	0.5002	-0.3710	15	33.7749	4.9935	24.9346	0.9987	0.1478
48	1039	1	1	A1	TS01	0.2690	0.3002	0.0000	15	4.7580	2.3261	5,4108	0.9941	0.4889
48	1046	1	2	TP1	BS55	0.2090	0.41621	-1.5803	15	7.5706	1.1793	1.3908	0.9998	0.1558
48	1046	2	1	BA*	BG**	0.5926	0.1621	0.0000	13	42.0988	16.6814		0.9832	0.1956
		2	2	TP1	BG56							104.8895		0.3856
48	1046					0.9471	0.4889	-0.8175	15	26.5594	10.2416		0.9931	
48	1046	3	2	TP1	BG55	0.9946	0.6148	0.0000	15	75.0062	8.4506	71.4128	0.9985	0.1127
48	1047	1	1	A1	TS01	0.1957	0.5812	-1.0967	15	3.9545	2.3003	5.2916	0.9855	0.5817
48	1047	1	2	A2	TS03	0.7547	0.0755	-1.0669	15	5.6753	3.4096	11.6253	0.9975	0.6008
48	1048	1	1	A1	TS01	0.5724	0.3698	-1.4262	15	6.2640	1.4335	2.0549	0.9992	0.2288
48	1048	1	2	A2	TS03	0.5912	0.1241	-1.3962	15	4.7759	2.1736	4.7244	0.9982	0.4551
48	1049	1	1	A1	TS01	1.0273	0.1630	-1.6539	15	8.9400	2.2006	4.8426	0.9993	0.2462
48	1049	1	2	BA*	BS**	0.9918	0.2778	0.0000	15	11.1612	4.5471	20.6765	0.9982	0.4074
48	1050	1	1	A1	TS01	1.5581	0.2048	-1.6032	15	13.8254	2.5861	. 6.6878	0.9996	0.1871
48	1050	1	2	A2	TS04	1.4249	0.2317	-1.3411	15	11.8615	3.3286	11.0797	0.9993	0.2806
48	1050	3	2	TP1	BG55	1.1191	0.6722	0.0000	15	97.1308	10.5492	111.2865	0.9984	0.1086
48	1056	1	1	A1	TS02	0.7251	0.1003	-0.6057	15	3.6029	2.2711	5.1577	0.9990	0.6303
48	1056	1	2	A2	TS03	0.6485	0.1412	-2.2270	15	5.9666	1.6549	2.7388	0.9990	0.2774
48	1056	2	1	BA*	BG**	0.4747	0.7532	0.0000	15	50.1248	6.6977	44.8590	0.9971	0.1336

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

State	SHRP	Laver	Test	Loc.	Comple				No.	044				1
State	ID	Layer No.	No.	No.	Sample No.	k1	k2	k3	Points	Std Dev(M _R)	RMSE	MSE	R²	S _e /S _v
48	1056	2	2	TP1	BG55	0.8513	0.4880	-0.4002	15	35.8626	15.4161	237.6548	0.9863	0.4299
48	1056	2	2	TP1	BG56	0.7956	0.4463	-0.6084	15	23.5245	11.2791	127.2175	0.9890	0.4795
48	1060	1	1	A1	TS01	0.6443	0.3365	-2.3882	15	7.7133	2.0621	4.2522	0.9983	0.2673
48	1060	1	2	A2	TS03	0.7981	0.1751	0.0000	15	5.6172	2.3073	5.3238	0.9993	0.4108
48	1060	3	1	BA*	BG**	0.4672	0.9551	-0.0712	15	74.4472	4.3246	18.7024	0.9993	0.0581
48	1061	1	1	A1	TS02	0.8909	0.4123	-1.3360	15	10.8153	2.6377	6.9574	0.9989	0.2439
48	1061	1	2	A2	TS04	0.8356	0.1845	-1.0435	15	6.4016	3.3320	11.1023	0.9981	0.5205
48	1061	2	1	BA*	BG**	0.8527	0.5775	0.0000	15	57.9665	7.5989	57.7437	0.9981	0.1311
48	1061	2	2	TP1	BG55	1.0719	0.5824	-0.4320	15	51.7045	10.9626	120.1779	0.9964	0.2120
48	1065	1	1	A1	TS01	0.5213	0.5976	-1.6932	15	8.5312	1.6362	2.6770	0.9988	0.1918
48	1065	1	2	A2	TS03	0.4962	0.2820	-2.2360	15	5.7801	1.8836	3.5480	0.9977	0.3259
48	1065	2	1	BA*	BG**	0.7229	0.7348	-0.5081	15	50.2397	7.6681	58.7990	0.9973	0.1526
48	1068	1	1	BA2	BS02	0.8729	0.1775	-1.6186	15	7.3374	1.2804	1.6394	0.9997	0.1745
48	1068	1	2	TP1	BS55	0.6051	0.0593	-1.8845	15	5.6804	1.0365	1.0744	0.9995	0.1825
48	1068	3	1	BA*	BG**	0.6203	0.6740	-0.0205	15	53.5868	3.6333	13.2006	0.9994	0.0678
48	1068	3	2	TP1	BG55	0.5156	0.8304	-0.0221	15	64.2182	5.0362	25.3634	0.9989	0.0784
48	1069	1	1	BA*	BS**	0.7532	0.0771	0.0000	15	3.0000	2.1279	4.5279	0.9993	0.7093
48	1069	1	2	A2	TS03	0.4375	0.1681	-0.2736	15	2.9681	1.8376	3.3768	0.9983	0.6191
48	1069	1	2	TP1	BS55	1.0704	0.1992	-0.9432	15	7.2355	1.9804	3.9220	0.9996	0.2737
48	1070	1	1	BA*	BS**	0.8122	0.1334	-0.9318	15	4.5743	0.8297	0.6885	0.9999	0.1814
48	1070	1	2	A2	TS03	0.5886	0.1441	-2.6538	15	7.5826	2.9387	8.6362	0.9952	0.3876
48	1076	1	1	A1	TS01	0.8602	0.4952	-1.1453	15	12.4281	3.8649	14.9375	0.9978	0.3110
48	1076	1	2	A2	TS03	0.8243	0.5250	-1.6402	15	12.0704	2.5359	6.4308	0.9988	0.2101
48	1077	1	1	A1	T\$03	0.7623	0.4403	-1.0167	15	10.6064	4.7174	22.2535	0.9958	0.4448
48	1077	1	2	TP1	BS55	0.6875	0.4037	-0.8742	15	8.4515	2.6379	6.9586	0.9984	0.3121
48	1077	2	2	TP1	BG55	1.1532	0.6336	-0.0656	15	86.5221	5.9036	34.8525	0.9994	0.0682
48	1087	1	1	A1	TS02	1.0534	0.5543	-2.1209	15	16.5135	5.2940	28.0269	0.9963	0.3206
48	1087	1	2	A2	TS04	0.9902	0.4640	-1.8606	15	12.9144	2.5636	6.5719	0.9991	0.1985
48	1087	2	1	BA*	BG**	1.0699	0.4313	-0.0371	15	45.4053	9.7455	94.9744	0.9971	0.2146
48	1087	2	2	TP1	BG55	0.8091	0.6580	-0.1574	15	60.5297	5.1602	26.6275	0.9991	0.0853
48	1092	1	1	BA*	BS**	0.6858	0.0000	0.0000	15	6.8958	6.8958	47.5524	0.9909	1.0000
48	1092	1	2	A2	TS03	0.5586	0.1308	-1.3361	15	4.4110	2.1759	4.7348	0.9980	0.4933
48	1092	2	1	BA*	BG**	1.2075	0.6778	-0.1562	15	95.8562	11.6279	135.2075	0.9981	0.1213
48	1092	2	2	TP1	BG56	1.0069	0.7279	-0.1513	15	90.0656	7.9083	62.5408	0.9989	0.0878
48	1092	3	2	TP1	BG55	0.8162	0.9196	-0.1491	15	113.9006	5.2890	27.9736	0.9996	0.0464
48	1093	1	1	BA*	BS**	0.8755	0.5979	-1.6241	15	14.1202	2.5389	6.4461	0.9990	0.1798
48	1093	1	-2	A2	TS03	0.8456	0.2368	-2.8365	15	9.9976	1.2405	1.5390	0.9996	0.1241
48	1093	2	1	BA*	BG**	0.4777	0.8992	0.0000	15	70.9626	3.8067	14.4906	0.9994	0.0536
48	1094	1	1	BA*	BS**	1.6352	0.1700	-1.2629	15	12.5691	4.8236	23.2669	0.9989	0.3838
48	1094	1	2	TP1	BS55	1.3982	0.3655	0.0000	15	23.0356	13.1342	172.5080	0.9929	0.5702
48	1094	2	1	BA*	BG**	1.5853	0.6592	-0.2348	15	110.3281	11.0771	122.7017	0.9989	0.1004
48	1094	2	2	TP1	BG55	1.4927	0.7425	-0.5738	15	101.3282	21.6068	466.8531	0.9947	0.2132
48	1096	1	1	A1	TS01	0.6131	0.3404	-2.4188	15	7.3179	1.8548	3.4402	0.9985	0.2535
48	1096	1	2	A2	TS03	0.7918	0.1782	0.0000	15	5.6172	2.2089	4.8791	0.9993	0.3932
48	1096	2	1	BA*	BG**	1.1299	0.6115	-0.0809	15	78.6232	9.6798	93.6992	0.9983	0.1231
48	1096	2	2	TP1	BG55	1.4170	0.6724	0.0000	15	131.5498	47.2433	2231.9330	0.9802	0.3591
48	1109	1	1	A1	TS01	0.8706	0.0230	-2.1721	15	9.5529	1.7616	3.1032	0.9993	0.1844
48	1109	1	2	A2	TS03	0.7174	0.2844	-2.2452	15	7.7410	1.5772	2.4875	0.9992	0.2037
48	1111	1	1	A1	TS01	0.5797	0.0165	-0.1335	15	5.7046	5.6809	32.2726	0.9910	
48	1111	1	2	A2	TS03	0.5305	0.1816	0.0000	15	8.1504	7.3507	54.0324	0.9837	0.9019
48	1111	2	1	BA*	BG**	0.8135	0.6991	-0.6209	15	47.2577	6.7876	46.0711	0.9979	0.1436
48	1111	2	2	TP1	BG55	0.9247	0.6744	-0.5227	15	54.4180	5.4616	29.8294	0.9990	
48	1113	1	1	A1	TS01	1.4862	0.5646 0.0979	-0.4100	15	27.9782	2.8598	8.1783	0.9997	0.1022
48 48	1113	2	1	A2	TS03 BG**	0.6508		0.0000	15	15.7788	15.6134	243.7787	0.9513	0.9895
48	1113	2	2	BA*	BG**	0.6822	0.6823	-0.0883	15	56.8836	3.4954	12.2182	0.9995	0.0614
48	1113	2	2	BA*	BG"	0.5870	0.6988	-0.3355	15	42.5607	4.2733	18.2612	0.9988	0.1004

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

State	SHRP	Layer	Test	Loc.	Sample				No.	Std	D140D		R²	
Code	ID	No.	No.	No.	No.	k1	k2	k3	Points	Dev(M _R)	RMSE	MSE		S _• /S _v
48	1116	1	1	A1	TS01	0.6600	0.0845	0.0000	15	5.0124	4.5751	20.9316	0.9957	0.9128
48	1116	1	2	A2	TS03	1.0212	0.1796	-1.6503	15	9.4903	3.8936	15.1599	0.9979	0.4103
48	1116	1	2	BA*	BS**	0.9684	0.6387	-2.3171	15	16.0083	3.5275	12.4434	0.9980	0.2204
48	1116	2	-1	BA*	BG**	0.8627	0.6446	-0.3105	15	54.3408	7.4961	56.1922	0.9980	0.1379
48	1116	2	2	BA*	BG**	0.7072	0.7099	-0.2427	15	56.0598	2.7298	7.4521	0.9997	0.0487
48	1119	1	1	A1	TS01	0.6123	0.5002	-4.4764	15	10.1831	3.6670	13.4472	0.9906	0.3601
48	1119	1	2	A2	TS03	0.9051	0.3711	-2.2878	15	11.6729	4.6384	21.5149	0.9957	0.3974
48	1119	2	1	BA*	BG**	0.8611	0.5342	-0.2475	15	41.6198	5.8457	34.1727	0.9985	0.1405
48	1119	2	2	BA*	BG**	0.9342	0.6529	-0.4263	15	55.0876	7.1734	51.4578	0.9983	0.1302
48	1122	1	1	BA*	BS**	0.7429	0.6981	-0.7939	13	16.2678	2.8990	8.4044	0.9987	0.1782
48	1122	1	2	A2	TS03	1.3591	0.3205	-1.2279	15	14.2210	6.5101	42.3815	0.9972	0.4578
48	1122	2	1	BA*	BG**	0.6373	0.7066	-0.2534	15	49.2421	5.2154	27.2003	0.9986	0.1059
48	1122	2	2	TP1	BG56	0.7464	0.6473	-0.2806	15	48.5090	5.2748	27.8238	0.9987	0.1087
			1	BA*	BG**									
48	1122	3	_			1.5637	0.4818	-0.0042	15	80.6908	14.5067	210.4451	0.9974	0.1798
48	1122	3	2	TP1	BG55	1.3659	0.4999	0.0000	15	74.0008	7.4202	55.0590	0.9991	0.1003
48	1123	2	1	BA*	BG**	0.9039	0.6133	0.0000	15	67.8677	8.7063	75.7992	0.9980	0.1283
48	1123	2	2	TP1	BG55	1.3586	0.7716	-0.1586	15	142.7129	38.9888	1520.1290	0.9870	0.2732
48	1130	1	1	A1	TS01	0.8339	0.3785	-3.0166	15	11.0970	2.6387	6.9628	0.9981	0.2378
48	1130	11	2	A2	TS03	0.4708	0.1461	0.0000	15	7.6420	7.2012	51.8574	0.9798	0.9423
48	1168	1	1	BA*	BS**	0.5363	0.5224	-0.6130	13	9.0128	1.4398	2.0731	0.9994	0.1598
48	1168	1	2	TP1	BS55	0.7643	0.3016	-2.4930	15	9.8188	3.6417	13.2619	0.9960	0.3709
48	1168	2	1	BA*	BG**	0.8288	0.6750	0.0000	15	75.9349	18.8174	354.0960	0.9908	0.2478
48	1168	2	2	TP1	BG55	0.8960	0.7159	-0.6894	15	51.9649	8.8914	79.0570	0.9970	0.1711
48	1169	1	1	A1	TS01	0.5189	0.3640	0.0000	15	7.2526	1.8333	3.3610	0.9990	0.2528
48	1169	1	2	BA*	BS**	0.5656	0.4104	0.0000	15	9.8431	4.6508	21.6300	0.9947	0.4725
48	1169	2	1	BA*	BG**	0.9740	0.6142	-0.2792	15	57,9787	7.3459	53.9626	0.9984	0.1267
48	1169	2	2	BA*	BG**	0.8358	0.5874	0.0000	15	57.8642	6.9788	48.7036	0.9984	0.1206
48	1174	1	1	BA*	BS**	0.8932	0.1124	-0.6738	15	4.0297	1.0964	1.2021	0.9998	0.1200
48	1174	1	2	TP1	BS55	0.7137	0.1437	-1.3846	15	5.3914	1.2550	1.5751	0.9996	0.2328
48	1174	2	1	BA*	BG**	1.6799	0.5421		15	73.7977				
			_	TP1	BG55			-0.4016			13.3790	178.9982	0.9977	0.1813
48	1174	2	2			0.3661	0.5938	0.0000	15	25.9945	3.2338	10.4575	0.9982	0.1244
48	1178	1	1	A1	TS02	0.7560	0.6120	-2.1811	15	12.1655	2.9447	8.6714	0.9978	0.2421
48	1178	1	2	TP1	BS55	0.4893	0.0709	-4.1166	15	6.4859	0.6759	0.4568	0.9995	0.1042
48	1178	3	1	BA*	BG**	1.0965	0.6769	-0.1937	15	82.2865	10.3738	107.6152	0.9981	0.1261
48	1178	3	2	TP1	BG55	1.2110	0.5944	0.0000	15	87.1282	16.2582	264.3297	0.9960	0.1866
48	1181	1	1	BA*	BS**	0.5584	0.0584	-0.9664	15	3.2042	0.7428	0.5518	0.9998	0.2318
48	1181	1	2	BA*	BS**	0.7741	0.3088	0.0000	15	14.3172	11.2218	125.9298	0.9829	0.7838
48	1181	3	1	BA*	BG**	0.5263	0.5941	-0.1956	15	32.0852	8.4562	71.5068	0.9931	0.2636
48	1181	3	2	BA*	BG**	0.5965	0.4934	-0.0726	15	29.6996	6.4603	41.7353	0.9963	0.2175
48	1183	1	1	A1	TS01	1.1153	0.5611	-2.5662	15	16.7838	3.4547	11.9353	0.9984	0.2058
48	1183	1	2	A2	TS03	0.5369	0.1391	-0.5341	15	4.7789	4.0887	16.7172	0.9940	0.8556
48	1183	2	1	BA*	BG**	0.9761	0.5845	-0.4770		45.8192	10.2230	104.5105	0.9961	
48	1183	2	2	TP1	BG55	1.1945	0.4834	-0.4498	15	41.8088	10.4902	110.0445	0.9966	0.2509
48	2133	1	1	A1	. TS01	0.8825	0.2062	-0.5692	15	6.4940	3.4616	11.9824	0.9984	0.5330
48	2133	2	1	BA*	BG**	0.8670	0.3555	0.0000	15	29.4880	7.0663	49.9333	0.9972	0.2396
48	2133	2	2	TP1	BG56	0.9124	0.5934	-0.2994	15	50.4702	7.3042	53.3512	0.9981	0.1447
48	2133	3	1	BA*	BG**	1.2008	0.5362	-0.2994	15	67.2307	8.3571	69.8419	0.9986	0.1243
48	2172	1	1	BA*	BS**	1.2787	0.3241	-2.0671	15	13.9130		4.0414		0.1243
48	2172	1	2	A2	TS03	1.0860	0.4669		15		2.0103		0.9996	
48		2	1					-1.3617		15.8198 37.5204	6.9894	48.8520	0.9950	0.4418
	2172			BA*	BG**	0.9072	0.5018	-0.3122	15		3.2859	10.7969	0.9995	0.0876
48	2172	2	2	TP1	BG55	0.3511	0.7418	0.0000	15	36.8771	6.5394	42.7638	0.9948	0.1773
48	2176		1	A1	TS01	1.0513	0.3217	-1.1322	15	10.0617	2.5702	6.6062	0.9993	0.2554
48	2176	1	2	A2	TS03	0.5881	0.5567	-1.7206	15	8.8641	1.5623	2.4407	0.9991	0.1762
48	3003	1	1	A1	TS01	0.6192	0.0679	0.0000	15	4.4593	4.1960	17.6067	0.9959	0.9410
48	3003	1	2	A2	TS03	0.7775	0.1964	-1.8579	15	7.6780	1.3521	1.8281	0.9995	0.1761
48	3003	1	2	BA*	BS**	0.7511	0.3068	-1.1866	15	7.9343	3.8754	15.0188	0.9968	0.4884

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

State	SHRP	Layer	Test	Loc.	Sample				No.	Std				
Code	ID	No.	No.	No.	No.	k1	k2	k3	Points	Dev(M _R)	RMSE	MSE	R ²	s _e /s _v
48	3010	1	1	BA*	BS**	1.3216	0.4319	-0.8315	15	16.9910	3.3028	10.9087	0.9994	0.1944
48	3010	1	2	BA*	BS**	1.2018	0.0371	-0.4498	15	5.2572	4.1184	16.9613	0.9988	0.7834
48	3559	1	1	BA*	BS**	0.5283	0.4441	-1.1081	15	7.5731	3.8451	14.7847	0.9941	0.5077
48	3559	1	2	A2	TS04	1.8621	0.3327	-2.3088	15	21.8811	5.7345	32.8850	0.9984	0.2621
48	3559	2	2	BA*	BG**	0.6777	0.7088	-0.1040	15	59.9317	2.8371	8.0489	0.9997	0.0473
48	3569	1	1	A1	TS01	1.0267	0.2027	-3.5340	15	13.3962	2.1068	4.4387	0.9991	0.1573
48	3569	1	2	A2	TS03	1.0925	0.2743	-2.7706	15	13.1595	1.7139	2.9374	0.9995	0.1302
48	3579	1	1	A1	TS01	0.9075	0.1757	-0.1934	15	6.3830	3.6998	13.6882	0.9985	0.5796
48	3579	1	2	TP1	BS55	1.3686	0.2137	-1.0404	15	10.1803	3.5574	12.6550	0.9992	0.3494
48	3579	3	1	BA2	BG02	0.8486	0.7206	-0.2323	15	70.5724	8.6469	74.7693	0.9979	0.1225
48	3579	3	2	TP1	BG55	0.9795	0.5958	-0.3799	15	51.1478	10.7036	114.5670	0.9962	0.2093
48	3589	1	1	BA*	BS**	0.8255	0.4347	-0.9027	15	10.6293	1.8368	3.3739	0.9995	0.1728
48	3589	1	2	A2	TS03	0.6124	0.2298	0.0000	15	7.6426	5.6974	32.4601	0.9927	0.7455
48	3589	2	1	BA*	BG**	0.7018	0.5286	-0.3641	15	30.9365	9.6662	93.4358	0.9930	0.3125
48	3589	2	2	BA*	BG**	0.6064	0.6015	-0.2226	15	36.3433	4.8411	23.4359	0.9983	0.1332
48	3609	1	1	A1	TS01	1.0019	0.1553	-1.1059	15	7.6613	3.9094	15.2833	0.9981	0.5103
48	3609	1	2	A2	TS03	1.1427	0.2088	0.0000	15	19.8825	17.8032	316.9555	0.9797	0.8954
48	3609	2	1	BA*	BG**	0.9874	0.6889	-0.2357	15	74.1827	7.3598	54.1660	0.9988	0.0992
48	3609	2	2	TP1	BG55	0.9310	0.6618	-0.1583	15	69.3289	7.6087	57.8930	0.9986	0.1097
48	3629	1	1	A1	TS01	0.5051	0.4218	0.0000	15	8.5373	3.1936	10.1990	0.9968	0.3741
48	3629	1	2	A2	TS03	0.6260	0.6250	-0.7440	15	12.2638	1.8072	3.2658	0.9992	0.1474
48	3669	1	1	A1	TS01	0.5386	0.5690	-0.4213	15	10.3680	1.7830	3.1792	0.9991	0.1720
48	3679	1	1	A1	TS01	0.8181	0.2984	-5.9348	15	12.6878	2.0251	4.1010	0.9979	0.1596
48	3679	1	2	A2	TS03	0.9106	0.0806	-2.0818	15	9.2618	2.8048	7.8668	0.9985	0.3028
48	3689	1	1	A1	TS01	0.7872	0.5902	-0.8875	15	14.7206	3.6583	13.3831	0.9979	0.2485
48	3689	1	2	A2	TS03	0.8658	0.2941	0.0000	15	17.2743	14.7415	217.3108	0.9766	0.8534
48	3699	1	1	A1	TS01	0.7258	0.2840	-2.2718	15	8.2451	1.9560	3.8260	0.9988	0.2372
48	3699	1	2	A2	TS3	0.5171	0.1171	-1.6449	15	4.8727	2.1237	4.5101	0.9976	0.4358
48	3719	1	1	BA*	BS**	1.0874	0.2352	-1.6164	15	9.7238	1.2773	1.6314	0.9998	0.1314
48	3719	1	2	A2	TS03	0.8553	0.0000	-2.3761	15	11.2364	4.6756	21.8614	0.9946	0.4161
48	3729	1	1	A1	TS01	0.6161	0.2844	-0.9449	15	6.9741	4.4894	20.1548	0.9941	0.6437
48	3729	1	2	A2	TS03	0.8793	0.3458	-2.7438	15	11.0419	2.2294	4.9704	0.9988	0.2019
48	3729	3	1	BA*	BG**	0.4983	0.3616	0.0000	15	18.3633	7.5055	56.3321	0.9907	0.4087
48	3729	3	2	TP1	BG55	0.3628	0.6231	-0.3130	15	22.0396	5.0054	25.0537	0.9947	0.2271
48	3739	1	1	BA*	BS**	0.7775	0.6480	-0.2105	14	18.6712	4.3894	19.2671	0.9976	0.2351
48	3739	1	2	TP1	BS55	0.7142	0.5147	-0.0185	14	14.4747	2.9015	8.4188	0.9988	0.2005
48	3749	1	1	A1	TS02	0.5443	0.0767	0.0000	15	3.3566	2.9886	8.9315	0.9973	0.8904
48	3749	1	2	A2	TS03	0.7364	0.0000	0.0000	15	8.1574	8.1574	66.5429	0.9890	1.0000
48	3749	3	1	BA*	BG**	0.7245	0.6321	-0.4749	15	39.0022	8.3789	70.2067	0.9958	0.2148
48	3749	3	2	TP1	BG55	0.7531	0.6258	-0.3916	15	42.5085	4.6821	21.9224	0.9989	0.1101
48	3769	1	1	BA*	BS**	0.7304	0.1785	-0.5835	15	5.3515	3.5912	12.8970	0.9975	0.6711
48	3769	1	2	A2	TS02	0.6608	0.4072	-1.4669	15	7.9952	2.4608	6.0555	0.9982	0.3078
48	3769	2	1	BA*	BG**	0.7405	0.7234	-0.0184	15	72.6001	6.5095	42.3737	0.9988	0.0897
48	3769	2	2	TP1	BG55	1.0551	0.6975	0.0000	15	98.6007	7.6388	58.3509	0.9991	0.0775
48	3779	1	1	A1	TS01	0.4182	0.0991	-1.9067	15	4.7729	2.8088	7.8896	0.9931	0.5885
48	3779	1	2	A2	TS03	0.5474	0.8711	-3.6300	15	11.2935	3.8440	14.7762	0.9904	0.3404
48	3779	2	1	BA*	BG**	0.8962	0.8037	-0.2238	15	91.0029	6.4221	41.2429	0.9992	0.0706
48	3779	2	2	BA*	BG**	1.3180	0.6415	-0.3775	15	78.4383	10.7225	114.9721	0.9982	0.1367
48	3845	1	1	A1	TS01	0.7689	0.0902	-1.8058	15	6.9577	1.4250	2.0307	0.9995	0.2048
48	3845	1	2	A2	TS03	0.9610	0.1262	-1.4659	15	7.5391	1.9179	3.6784	0.9995	0.2544
48	3855	1	2	BA*	BS**	0.6657	0.3326	0.0000	15	11.0182	7.4470	55.4572	0.9898	0.6759
48	3855	3	1	BA*	BG**	1.1692	0.6775	-0.1114	15	93.7113	10.6134	112.6450	0.9984	0.1133
48	3855	3	2	BA*	BG**	1.0912	0.5608	-0.1954	15	59.6986	11.0639	122.4101	0.9970	0.1853
48	3865	1	1	BA*	BS**	1.2225	0.5115	0.0000	15	38.0167	24.3138	591.1616	0.9695	0.6396
48	3865	1	2	BA*	BS**	1.0770	0.2217	-0.1799	15	8.8436	3.8086	14.5056	0.9989	0.4307
48	3865	2	1	BA*	BG**	1.2664	0.5259	0.0000	15	75.0102	12.9163	166.8304	0.9972	0.1722

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

CATA	euro l	Lauras	Test	1.55	Comple				N-	614				
State Code	SHRP	Layer No.	Test No.	Loc. No.	Sample No.	k1	k2	k3	No. Points	Std Dev(M _R)	RMSE	MSE	R²	S _a /S _v
48	3865	3	1	BA*	BG**	1.3101	0.4971	0.0000	15	72.1820	16.8039	282.3720	0.9952	0.2328
48	3865	3	2	BA*	BG**	1.4621	0.4890	0.0000	15	79.7790	24.1432	582.8943	0.9920	0.3026
48	3875	1	1	A1	TS02	0.8909	0.4123	-1.3360	15	10.8153	2.6377	6.9574	0.9989	0.2439
48	3875	1	2	A2	TS04	0.8356	0.1845	-1.0435	15	6.4016	3.3320	11.1023	0.9981	0.5205
48	3875	2	1	BA*	BG**	0.8527	0.5775	0.0000	15	57.9665	7.5989	57.7437	0.9981	0.1311
48	3875	2	2	TP1	BG55	1.0719	0.5824	-0.4320	15	51.7045	10.9626	120.1779	0.9964	0.2120
48	4142	1	1	A1	TS01	1.1171	0.1876	0.0000	15	11.8491	9.0519	81.9362	0.9943	0.7639
48	4142	1	2	A2	TS03	0.8534	0.5502	-2.7885	15	13.0377	2.7326	7.4672	0.9982	0.2096
48	4142	2	1	BA*	BG**	0.6898	0.6644	-0.1726	15	51.6384	3.8000	14.4396	0.9993	0.0736
48	4143	1	1	A1	TS01	0.5192	0.1006	-3.3748	15	6.4991	0.9771	0.9546	0.9992	0.1503
48	4143	1	2	A2	TS03	0.6944	0.0709	-3.7478	15	9.4466	0.6026	0.3632	0.9998	0.0638
48	4146	1	1	A1	TS01	0.8967	0.0960	-2.6418	15	10.2804	1.0173	1.0349	0.9998	0.0990
48	4146	1	2	BA*	BS**	0.7922	0.1042	-1.4312	15	6.1179	1.3984	1.9555	0.9996	0.2286
48	4152	1.	1	A1	TS01	1.0009	0.4958	-3.4883	15	15.7918	4.4307	19.6312	0.9957	0.2806
48	4152	1	2	A2	TS03	0.5188	0.7056	-3.9887	15	9.1376	2.2527	5.0747	0.9956	0.2465
48	5024	1	1	A1	TS01	0.7839	0.6234	-1.0216	15	14.4133	1.5606	2.4356	0.9996	0.1083
48	5024	1	2	A2	TS03	0.6295	0.5079	-1.2612	15	9.1610	1.8537	3,4360	0.9990	0.2023
48	5026	1	1	A1	TS01	0.4942	0.0000	0.0000	15	3.3267	3.3267	11.0667	0.9959	1,0000
48	5026	1	2	A2	TS03	0.6330	0.0982	-1.8711	15	6.1513	2.6269	6.9004	0.9974	0.4270
48	5035	- 1	1	BA*	BS**	1.4983	0.2332	-1.6172	15	15.0545	7.3138	53.4921	0.9966	0.4858
48	5035	1	2	A2	TS01	0.6420	0.5294	-1.2696	15	10.3418	3.7580	14.1228	0.9961	0.3634
48	5154	1	1	A1	TS02	0.6028	0.0000	0.0000	15	9.0196	9.0196	81.3524	0.9800	1.0000
48	5154	1	2	A2	T\$03	1.3451	0.4239	-1.0231	15	17.2232	5.1358	26.3760	0.9984	0.2982
48	5274	1	1	A1	TS01	0.8072	0.3649	-0.4367	15	9.6249	2.2282	4.9648	0.9993	0.2315
48	5274	1	2	BA*	BS**	0.6108	0.0003	-4.9793	15	9.8764	1.4840	2.2021	0.9981	0.1503
48	5278	1	1	BA*	BS**	0.7006	0.2426	-0.5890	15	6.6940	4.2286	17.8809	0.9963	0.6317
48	5278	1	2	BA*	BS**	1.0431	0.3908	-0.7118	15	12.5634	3.1848	10.1428	0.9991	0.2535
48	5283	1	1	BA*	BS**	1.1492	0.2770	-2.1357	15	12.6201	2.4808	6.1543	0.9992	0.1966
48	5283	1	2	A2	TS03	1.0381	0.2403	-2.2314	15	11.5478	3.0142	9.0856	0.9986	0.2610
48	5284	1	1	BA*	BS**	0.8908	0.4057	-1.8433	15	11.9032	6.3418	40.2184	0.9928	0.5328
48	5284	1.	2	BA*	BS**	1.2864	0.2540	-1.5777	15	11.8048	2.8857	8.3275	0.9993	0.2445
48	5287	1	1	A1	TS01	1.0870	0.5970	-1.0263	15	20.7876	7.9700	63.5210	0.9945	0.3834
48	5287	1	2	A2	TS03	1.0347	0.1660	-1.2314	15	7.2651	1.4041	1.9716	0.9998	0.1933
48	5301	1	1	BA*	BS**	1.5556	0.2404	-1.8881	15	16.1372	5.2772	27.8490	0.9982	0.3270
48	5310	1	1	BA*	BS**	1.5817	0.2623	-0.9995	15	13.4953	5.0810	25.8164	0.9988	0.3765
48	5310	1	2	BA*	BS**	1.1585	0.3833	0.0000	15	21.3370	13.7334	188.6076	0.9888	0.6436
48	5317	1	2	BA*	BS**	1.1854	0.1472	-0.1649	15	6.1860	2.4602	6.0524	0.9996	0.3977
48	5323	1	1	A1	TS01	0.7712	0.2614	-1.7482	15	7.9144	2.9943	8.9661	0.9978	0.3783
48	5323	1	2	A2	TS03	0.5231	0.1702	0.0000	15	10.5978	10.0911	101.8306	0.9688	0.9522
48	5328	1	1	BA*	BS**	0.6195	0.2964	0.0000	15	7.7533	3.5977	12.9435	0.9972	0.4640
48	5328	1	2	BA*	BS**	0.9400	0.2737	-0.7221	15	7.9325	2.4006	5.7631	0.9993	0.3026
. 48	5328	2	1	BA*	BG**	1.2057	0.6678	-0.5053	15	70.0284	15.2927	233.8654	0.9953	0.2184
48	5328	2	2	BA*	BG**	1.3066	0.6749	-0.3716	15	84.9276	13.1606	173.2012	0.9974	0.1550
48	5334	1	1	A1	TS01	1.1230	0.3507	-2.1864	15	13.0760	2.3668	5.6017	0.9993	0.1810
48	5334	1	2	A2	TS03	0.4436	0.2779	-2.0031	15	5.3032	2.7747	7.6991	0.9940	0.5232
48	5334	2	1	BA*	BG**	0.8673	0.6713	-0.2076	15	63.3952	7.6303	58.2211	0.9988	0.1204
48	5334	2	2	BA*	BG**	0.6408	0.8223	-0.4483	15	57.1899	6.5150	42.4458	0.9981	0.1139
48	5335	1	1	A1	TS01	1.0870	0.2442	-1.9767	15	11.3167	3.8455	14.7879	0.9981	0.3398
48	5335	1	2	BA*	BS**	0.8031	0.2092	0.0000	15	15.6510	14.3869	206.9826	0.9733	0.9192
48	5336	1	1	A1	TS02	0.6660	0.7842	-1.1332	15	15.8601	3.0139	9.0838	0.9980	0.1900
48	5336	1	2	A2	TS03	0.5993	0.0394	0.0000	15	10.9870	10.9548	120.0075	0.9708	0.9971
48	6079	1	1	A1	TS01	0.6642	0.2998	-1.5951	15	7.1534	3.0129	9.0776	0.9972	0.4212
48	6079	1	2	A2	TS03	0.6024	0.6458	-0.2059	15	15.2447	4.9298	24.3025	0.9948	0.3234
48	6079	2	1	BA*	BG**	0.8312	0.6924	-0.2645	15	63.3301	7.1331	50.8813	0.9984	0.1126
48	6079	2	2	TP1	BG55	1.0314	0.6060	-0.1234	15	68.9553	6.7147	45.0871	0.9990	0.0974
48	6086	1	_1	BA*	BS**	1.0420	0.2928	-0.4239	15	9.7160	2.2405	5.0197	0.9996	0.2306
						لتتنسب								

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

0111	OURD	1	T1		Commis				No	044				
State Code	SHRP	Layer No.	Test No.	Loc. No.	Sample No.	k1	k2	k3	No. Points	Std Dev(M _R)	RMSE	MSE	R²	S_/S_
48	6086	1	2	BA*	BS**	1.2088	0.4265	-0.9874	15	15.2431	4.6335	21.4689	0.9984	0.3040
48	6086	3	1	BA*	BG**	0.5267	0.8172	-0.4793	15	45.8608	3.8488	14.8132	0.9990	0.0839
48	6086	3	12	BA*	BG**	0.3105	0.6743	0.0000	15	26.6508	8.7508	76.5773	0.9849	0.3284
48	6160	1	1	A1	TS01	0.8030	0.5282	-1.5959	15	11.7100	2.4616	6.0595	0.9988	0.2102
48	6160	1	2	A2	TS03	0.7838	0.3104	-1.8914	15	8.8307	3.1643	10.0130	0.9975	0.3583
48	6160	2	1	BA*	BG**	0.8726	0.5779	-0.4339	15	41.4319	8.9644	80.3599	0.9964	0.2164
48	6160	2	2	TP1	BG56	0.9748	0.5737	-0.6729	15	38.2874	8.8441	78.2183	0.9965	0.2310
48	6160	3	2	TP1	BG55	0.6736	0.7802	-0.4673	15	54.0436	9.6652	93.4165	0.9957	0.1788
48	6179	1	1	A1	TS01	0.4822	0.2125	-1.0385	15	5.2490	4.1291	17.0495	0.9913	0.7866
48	6179	11	2	TP1	BS55	0.8004	0.4316	-0.9298	15	10.1009	2.2976	5.2789	0.9991	0.2275
48	6179	2	1	BA*	BG**	0.8907	0.4659	-0.3075	15	33.4070	9.2941	86.3811	0.9955	0.2782
48	6179	2	2	TP1	BG56	1.3590	0.4119	-0.0515	15	52.8315	6.4993	42.2415	0.9991	0.1230
48	6179	3	1	BA*	BG**	0.6677	0.8267	-0.3630	15	64.4824	4.9904	24.9042	0.9991	0.0774
48	6179	3	2	TP1	BG55	0.9588	0.5936	-0.4588	15	46,6597	8.1894	67.0668	0.9975	0.1755
48	7165	1	1	BA*	BS**	1.1862	0.1231	-0.7905	15	5.9936	1.6291	2.6540	0.9998	0.2718
48	7165 9005	1	2	BA*	TS01	0.9013 0.3172	0.0985	-0.6833 -0.4635	15 15	4.1748	1.8001	3.2403	0.9996	0.4312
48	9005	1	2	A1 A2	TS02	0.3172	0.0000	0.0000	15	2.6241 5.8039	2.4190 4.7482	5.8515 22.5456	0.9939	0.9218 0.8181
48	9005	2	1	BA*	BG**	1.3612	0.1162	-0.3394	15	51.6156	9.7545	95.1502	0.9968	0.8181
48	9005	2	2	TP1	BG55	1.0147	0.5039	-0.1886	15	47.5197	11.7760	138.6751	0.9955	0.1630
.48	9167	1	1	A1	TS02	0.8812	0.1315	-1.8578	15	7.9180	1.4721	2.1670	0.9996	0.1859
48	9167	1	2	A2	TS04	0.4121	0.1762	-3.8694	15	5.5274	2.1224	4.5044	0.9942	0.3840
48	9167	3	1	BA*	BG**	0.5166	0.7905	-0.3504	15	45.8396	5.2235	27.2846	0.9981	0.1140
48	9167	3	2	BA4	BG04	0.6355	0.6545	0.0000	15	68.4114	46.7841	2188.7500	0.9032	0.6839
48	9355	1	1	A1	TS01	0.8326	0.9215	-6.5304	15	16.5550	4.2824	18.3393	0.9903	0.2587
48	9355	1	2	A2	TS03	0.9827	0.3819	-2.7108	15	12.5098	2.4174	5.8439	0.9989	0.1932
48	9355	2	1	BA*	BG**	1.1978	0.5980	-0.5399	15	55.4975	9.5098	90.4357	0.9977	0.1714
48	9355	2	2	BA*	BG**	1.0700	0.5730	-0.1388	15	63.6345	10.0938	101.8849	0.9976	0.1586
49	1001	1	2	TP1	BS92	0.6573	0.2997	-0.6944	15	6.1875	2.1911	4.8007	0.9988	0.3541
49	1004	1	2	TP1	BS92	0.5560	0.4624	-1.7032	15	7.3666	2.1936	4.8120	0.9979	0.2978
49	1004	2	1	BA*	BG**	0.5228	0.4641	-0.0590	15	23.9394	4.1392	17.1331	0.9979	0.1729
49	1005	1	2	TP1	BS92	0.4435	0.5445	-0.1073	15	8.7788	1.4289	2.0416	0.9992	0.1628
49	1005	2	1	BA*	BS**	0.4553	0.6050	-0.3851	15	24.1858	4.2698	18.2313	0.9973	0.1765
49	1006	1	1	BA*	BS**	0.4898	0.3852	-1.1293	15	5.3940	0.8337	0.6951	0.9997	0.1546
49	1006	1	2	TP1	BS92	1.2204	0.2152	0.0000	15	11.4642	6.2059	38.5127	0.9978	0.5413
49	1007	1	1	BA*	BS**	0.7531	0.2743	-0.9425	15	6.4528	1.9615	3.8473	0.9992	0.3040
49	1007	1	-2	TP1	BS92	0.4903	0.5820	-2.3478	15	7.7337	2.2605	5.1101	0.9967	0.2923
49	1007	2	1	BA*	BG**	0.8246	0.3053	-0.2227	15	17.7555	4.4907	20.1663	0.9983	0.2529
49	1008	1	1	BA*	BS**	0.8006	0.2097	-1.6247	15	7.1481	1.5569	2.4239	0.9995	0.2178
49	1008		2	TP1	BS92	0.1806	0.0191	0.0000	15	1.9881	1.9842	3.9369	0.9892	0.9980
49	1017	1	2	TP1	BS93	0.4876	0.5832	-2.4639	15	7.7355	2.5250	6.3758	0.9957	0.3264
49	1017	2	2	TP1	BG92 BS**	0.3212	0.6559	-0.3865		19.7441	4.1297		0.9955	0.2092
49	3010 3010	1	2	BA*	BS**	0.7527 1.0737	0.1979 0.2270	-0.9158 0.0000	15 15	5.1501 10.8790	1.6498	2.7218	0.9994 0.9972	0.3203
49	3010	2	1	BA*	BG**	1.0737	0.2270	0.0000	15	23.0145	6.2007 5.0178	38.4482 25.1778	0.9972	0.5700 0.2180
49	3010	1	+	BA*	BS**	0.5780	0.1873	-1.6765	15	8.6261	2.1050	4.4310	0.9983	0.2440
49	3011	1	2	BA*	BS**	0.8525	0.1971	-0.4863	15	5.6753	2.5078	6.2888	0.9991	0.4419
49	3015	1	1	BA*	BS**	0.4704	0.6380	-0.3831	15	10.1686	1.5138	2.2915	0.9992	0.1489
49	3015	1	2	BA*	BS**	0.5093	0.6040	-0.7390	15	9.4783	1.6176	2.6166	0.9991	0.1707
49	7083	1	1	BA*	BS**	0.8152	0.2173	-1.3587	15	6.7485	1.7632	3.1087	0.9994	0.2613
49	7083	1	2	BA*	BS**	0.6113	0.3619	-1.2624	15	6.6246	1.8816	3.5404	0.9988	0.2840
49	7083	2	1	BA*	BG**	0.8260	0.3036	-0.4199	15	14.9736	6.2237	38.7348	0.9962	0.4156
49	7083	2	2	BA*	BG**	0.6247	0.4793	-0.2354	15	25.6539	4.6513	21.6346	0.9979	0.1813
49	7086	1	2	TP1	BS91	0.9678	0.1569	-0.0136	15	6.1582	2.7988	7.8336	0.9993	0.4545
50	1004	1	1	BA*	BS**	1.1439	0.4125	-1.4476	13	14.0060	4.2195	17.8039	0.9984	0.3013
50	1004	1	2	TP	BS55	0.3943	0.3176	-4.0953	15	5.5317	1.1752	1.3810	0.9977	0.2124

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

Description	01-4-	OU DD		T.	1	On marks				No	014				
	State	SHRP	Layer No.	Test No.	Loc.	Sample No.	k1	k2	k3	No. Points	Std Dev(Ma)	RMSE	MSE	R²	S./S.
Section 1															
Social S											20.1830	3.5260	12.4327	0.9984	0.1747
Section Sect			1	_		BS55					17.2902	7.9334	62.9395	0.9949	0.4588
	50	1681	2	2	TP	BG56	0.6066	0.7146	-0.1734	15	51.2471	2.9838	8.9030	0.9995	0.0582
Section Sect	50	1682	1	1	BA*	BS**	1.0957	0.5284	-2.6105	15	16.5170	4.4261	19.5906	0.9972	0.2680
50	50	1682	1	2	BA*	BS**	1.1282	0.6013	-2.0879	15	18.1732	4.3784	19.1706	0.9979	0.2409
50 1885 2 2 TP 8086 0.488 0.7197 0.048 16	50	1682	2	2	BA*	BG**	0.6875	0.6992	-0.1642	15	56.1181	3.9118	15.3021	0.9994	0.0697
STI	50	1683	2	1	BA1	BG02	0.8640	0.6675	-0.2055	14	65.0169	5.9241	35.0952	0.9989	0.0911
51	50	1683	2	2	TP		0.4986	0.7137	-0.0464						0.0634
51															
51															
51 0120 1 3 A5 TS00 0.4700 0.4086 1.5428 15 5.7628 1.7531 3.0733 0.9982 0.5042 51 0122 1 2 B1 BS01 0.6808 2.978 1.4822 15 6.8167 2.2448 5.0370 0.9986 0.3671 51 0124 1 2 B4 BS94 0.6206 0.4808 1.5863 15 6.9802 2.4886 6.1930 0.9989 0.3871 51 0124 1 2 B4 BS94 0.6206 0.4608 1.3342 15 7.3850 2.6712 7.1384 0.9989 0.9895 0.931 51 1022 1 1 BA* BS** 0.9203 0.5878 2.4904 15 14.7400 3.6876 13.5894 0.9899 0.9364 51 1023 3 2 7.9850 0.5863 0.5000 15 5.5106 2.1184 4.7021		_													
51															
51 0122 1 2 B3 BS03 0.5082 0.4662 -1.5953 15 6.9680 2.4886 6.1930 0.9968 0.3571 51 0124 1 2 B4 BS04 0.6206 0.4606 -1.3342 15 7.3950 2.6712 7.1364 0.9966 0.3612 51 0102 1 1 BA1 BS11 0.9912 0.4619 -1.9888 15 5.5015 5.5015 2.1684 4.7021 0.9985 0.3942 51 1002 1 1 BA3 BG03 0.7563 0.8550 -0.0902 15 5.5015 2.1684 4.7021 0.9985 0.9345 51 1023 3 1 BA3 BG03 0.7563 0.8550 -0.0902 15 5.85732 5.5106 3.03864 0.9984 0.9974 51 1023 3 2 TP BG55 0.7563 0.6951 0.0000 15 5.62160 6.1123 37.3603 0.9868 0.0984 51 1417 1 1 BA1 BS11 0.4674 0.2878 -0.6854 15 13.4313 3.7213 13.4477 0.9998 0.2771 51 1423 1 1 BA1 BS11 0.3984 0.3992 -1.7951 15 11.4642 3.5444 12.5626 0.9990 0.2627 51 1443 1 2 TP BS55 0.9345 0.3982 -2.3778 15 11.4642 3.5444 12.5626 0.9990 0.2627 51 1446 1 1 BA1 BS11 0.7885 0.0180 0.0218 -0.0801 15 11.0324 10.4828 10.9897 0.9848 0.9502 51 1446 1 1 BA1 BS11 0.9855 0.9380 0.218 -0.0801 15 0.9377 2.616 0.6246 0.9960 0.2657 51 2004 1 1 BA2 BS11 0.9655 0.9826 0.0260 15 8.9990 2.1311 4.5417 0.9968 0.2653 51 2004 1 1 BA2 BS11 0.9855 0.9836 0.0218 0.0801 15 0.9857 0.9846 0.9902 0.2653 51 2004 1 1 BA2 BS11 0.9855 0.9836 0.0218 0.9805 1.1804 0.9805															
51															
51 0124 1 3 A11 TS21 0.3912 0.4919 -1.9888 15 5.5015 2.1884 4.7021 0.9985 0.3945 51 1002 1 1 BA* BS** 0.9203 0.9578 2.4904 15 14.7400 3.8876 13.5884 0.9997 0.2003 51 1023 3 2 TP BGS5 0.7582 0.8901 0.0000 15 58.9732 5.5108 30.3884 0.9890 0.9971 51 1443 1 1 BA* BS** 1.4646 0.9997 0.9864 15 1.43431 3.7213 13.8477 0.9990 0.2775 51 1443 1 2 TP BSS5 0.9845 0.3982 1.77891 15 11.4447 2.8925 6.3865 0.9980 0.2751 51 1443 1 1 BA* BS** 0.7880 0.9800 1.78781 15 11.4447 2.982															
51 1002 1 1 BA* BS** 0.9203 0.5978 -2.4904 15 14.7400 3.8876 13.5984 0.9974 0.2502 51 1023 3 1 BAA BG03 0.7582 0.8650 -0.0802 15 5.82160 6.1123 37.3803 0.9886 0.9986 0.9981 6.5108 5.61260 6.1123 37.3803 0.9886 0.9981 0.5751 1423 1 1 BA* BS** 0.9465 0.9982 -1.7951 15 11.4313 3.7213 13.8477 0.9993 0.2771 51 1423 1 1 BA* BS** 0.9465 0.39992 -1.7951 16 11.4447 2.58925 8.3865 0.9980 0.3952 51 14243 1 1 BA* 85** 0.7885 0.3180 0.0000 15 11.4447 2.9825 8.3865 0.9980 0.2853 51 2021 2 1 BA* 85** 0.7882															
51 1023 3 1 BA3 BG03 0.7583 0.8550 -0.0002 15 58.9732 5.5108 30.3884 0.9989 0.0984 51 1147 1 BA8 BS*** 1.4674 0.2978 0.0884 15 5.5216 6.1123 37.3903 0.9980 0.1027 51 1417 1 BA** BS*** 0.9465 0.3992 -1.7951 15 11.4842 3.5444 12.5620 0.9980 0.3086 51 1423 1 2 TP BS55 0.9845 0.3386 2.3778 15 11.4447 2.8925 6.3868 0.9984 0.2525 51 14464 1 1 BA** BS*** 0.7885 0.1180 0.0000 15 11.4447 2.8925 6.8826 0.9984 0.2525 51 1420 1 1 BA** 8.9486 0.9807 0.2660 15 9.4377 2.5124 6.8246 0.9960															
51 1023 3 2 TP BG55 0.7682 0.8091 0.0000 15 56.2180 6.1123 37.3803 0.9986 0.1087 51 1417 1 1 BA' BS" 1.4674 0.2978 -0.8884 15 13.4313 37.213 13.8477 0.9998 0.2775 51 1443 1 2 TP BS55 0.9948 0.3388 -2.3778 15 11.4447 2.8925 3.3665 0.9984 0.2527 51 14464 1 1 BA' BS" 0.7985 0.1180 0.0000 15 11.0324 10.4826 10.9887 0.9860 0.2856 51 1464 1 1 BA' BS" 0.5852 0.3828 -3.7089 15 8.3990 2.1311 4.5417 0.9966 0.2853 51 2021 2 1 BA' BS" 0.5852 0.3826 -3.7089 15 8.3990 2.1311<															0.0934
61 1417 1 1 BA' BS" 1.4674 0.2978 -0.8854 15 13.4313 3.7213 13.8477 0.9993 0.2771 51 1423 1 1 BA' BS" 0.9965 0.3992 -1.7961 15 11.4484 2.5626 0.9960 0.3066 51 1423 1 1 BA' BS" 0.7885 0.1180 0.0000 15 11.4042 2.5424 0.9866 0.9984 0.2625 51 1464 1 2 TP BSSS 0.8938 0.0218 2.0860 15 9.8377 2.6124 6.8246 0.9960 0.2537 51 2021 2 1 BA' BS" 0.5652 0.3826 3.7089 15 8.3937 2.6124 6.8246 0.9960 0.2537 51 2021 2 2 TP BG55 0.5682 0.6289 -0.0855 15 5.50742 8.6415 7.46756				_								6.1123			0.1087
51 1423 1 2 TP BS65 0.9345 0.3388 -2.3778 15 11.4447 2.8925 8.3665 0.9984 0.2527 51 1464 1 1 BA* BS** 0.7885 0.1180 0.0000 15 11.0324 10.4828 109.8897 0.9886 0.9856 55 51 2004 1 1 BA* BS** 0.5652 0.3826 -3.7089 15 8.5980 2.1311 4.5417 0.9966 0.2853 51 2021 2 1 BA* BG** 0.9107 0.5696 0.2806 15 48.4904 10.3851 107.8510 0.9961 0.2142 51 2564 1 1 BA* BS** 0.7662 0.6289 -0.0855 15 55.0742 8.6415 74.6758 0.99972 0.1566 51 2564 1 1 BA* BS** 0.7682 0.6289 -0.0855 15 55.0742 8.6415 74.6758 <td></td> <td>0.2771</td>															0.2771
51 1464 1 1 BA* BS** 0.7885 0.1180 0.0000 15 11.0324 10.4828 109.8897 0.9846 0.9502 51 1464 1 2 TP BSS5 0.8938 0.0218 2.0860 15 9.8377 2.6124 6.8246 0.9986 0.2655 51 2004 1 1 BA* BS** 0.5662 0.3826 -3.7069 15 8.3990 2.1311 4.5417 0.9986 0.2537 51 2021 2 1 BA* BG** 0.9505 0.2606 15 48.4904 10.3851 10.78510 0.9981 0.2142 51 2564 1 1 BA* BS*** 0.7350 0.6886 0.5831 -0.3640 15 15.3649 2.2126 4.8956 0.9992 0.1435 51 2564 1 2 BA* BS*** 0.6886 0.5831 -0.3640 15 15.3649	51	1423	1	1	BA*	BS**	0.9465	0.3992	-1.7951	15	11.4842	3.5444	12.5626	0.9980	0.3086
51 1484 1 2 TP BS55 0.8988 0.0218 -2.0860 15 9.8377 2.8124 6.8246 0.9986 0.2855 51 2004 1 1 BA* BS*** 0.5652 0.3268 -3.7089 15 8.3990 2.1311 4.5417 0.9986 0.2537 51 2021 2 1 BA* BG*** 0.9107 0.5696 -0.2606 15 48.4904 10.3851 10.78510 0.9981 0.2636 51 2564 1 1 BA* BS*** 0.6886 0.5831 -0.3840 15 15.3687 1.7857 3.0127 0.9965 0.1276 51 2508 1 2 BA* BS*** 0.6886 0.5831 -0.3840 15 15.3687 1.7357 3.0127 0.9965 0.1276 51 2508 1 2 BA* BS*** 0.5809 0.5441 0.0000 15 11.9929 <t< td=""><td>51</td><td>1423</td><td>1</td><td>2</td><td>TP</td><td>BS55</td><td>0.9345</td><td>0.3388</td><td>-2.3778</td><td>15</td><td>11.4447</td><td>2.8925</td><td>8.3665</td><td>0.9984</td><td>0.2527</td></t<>	51	1423	1	2	TP	BS55	0.9345	0.3388	-2.3778	15	11.4447	2.8925	8.3665	0.9984	0.2527
51 2004 1 1 BA* BS** 0.5652 0.3826 -3.7069 15 8.3990 2.1311 4.5417 0.9968 0.2531 51 2021 2 1 BA* BG*** 0.9107 0.5696 -0.2606 15 48.4904 10.3851 107.8510 0.9961 0.216 51 2564 1 1 BA* BS** 0.7662 0.6289 -0.0855 15 55.0742 8.6415 74.6758 0.9962 0.1565 51 2564 1 2 BA* BS** 0.6866 0.6831 -0.3840 15 15.3849 2.2126 4.8956 0.9996 0.1275 51 5008 1 1 BA* BS** 0.6866 0.5831 -0.3840 15 13.5671 1.7357 3.0127 0.9996 0.1275 51 5008 1 2 BA* BS** 0.5809 0.5441 0.0000 15 1.9492 2	51	1464	1	1	BA*	BS**	0.7885	0.1180	0.0000	15	11.0324	10.4828	109.8897	0.9846	0.9502
51 2021 2 1 BA* BG** 0.9107 0.5696 -0.2806 15 48.4904 10.3851 107.8510 0.9961 0.2142 51 2021 2 2 TP BG55 0.7682 0.6289 -0.0855 15 55.0742 8.6415 77.6758 0.9972 0.1565 51 2564 1 1 BA* BS** 0.7350 0.6367 -0.4893 15 15.3849 2.2126 4.8956 0.9992 0.1436 51 2564 1 2 BA* BS** 0.6860 0.5841 15 15.5671 1.7357 3.0127 0.9990 0.1275 51 5008 1 2 BA* BS** 0.5809 0.5441 0.0000 15 11.9929 2.5340 6.4212 0.9986 0.2113 51 5008 1 2 BA* BS** 0.9082 0.1870 1.19295 15 9.5678 4.0459 16	51	1464	1	2	ΤP	BS55	0.8938	0.0218	-2.0860	15	9.8377	2.6124	6.8246	0.9986	0.2655
51 2021 2 2 TP BG55 0.7662 0.6289 -0.0855 15 55.0742 8.6415 74.6758 0.9972 0.1565 51 2564 1 1 BA* BS** 0.7350 0.8367 -0.4893 15 15.3849 2.2126 4.9856 0.9995 0.1275 51 2564 1 2 BA* BS** 0.6860 0.4407 -0.0251 15 13.5671 1.7357 3.0127 0.9996 0.2017 51 5008 1 2 BA* BS** 0.6460 0.4407 -0.0251 15 10.8417 3.2677 10.6778 0.9980 0.3115 51 5008 1 2 BA* BS** 0.5809 0.5441 0.0000 15 11.9929 2.5340 6.4212 0.9980 0.2115 51 5009 1 2 BA* BS** 1.0902 0.1000 15 1.1944 4.8225 23.2	51	2004	1	1	BA*	BS**	0.5652	0.3826	-3.7069	15	8.3990	2.1311	4.5417	0.9966	0.2537
51 2564 1 1 BA* BS** 0.7350 0.6367 -0.4893 15 15.3849 2.2126 4.8956 0.9992 0.1436 51 2564 1 2 BA* BS*** 0.6886 0.5831 -0.3640 15 13.5671 1.7357 3.0127 0.9986 0.2125 51 5008 1 1 BA* BS*** 0.6460 0.4407 -0.0251 15 10.8417 3.2677 10.6778 0.9980 0.3014 51 5008 1 1 BA* BS*** 0.5609 0.5441 0.0000 15 1.9929 2.5340 6.4212 0.9986 0.2115 51 5009 1 1 BA* BS*** 0.9052 0.1803 0.0000 15 9.5678 4.0459 16.3995 0.9969 0.4225 51 5009 1 2 BA* BS*** 1.0325 0.1803 0.0000 15 8.3449 4	51	2021	2	1	BA*	BG**	0.9107	0.5696	-0.2606	15	48.4904	10.3851	107.8510	0.9961	0.2142
51 2564 1 2 BA* BS** 0.6886 0.5831 -0.3640 15 13.5671 1.7357 3.0127 0.9996 0.1275 51 5008 1 1 BA* BS*** 0.6460 0.4407 -0.0251 15 10.8417 3.2677 10.6778 0.9980 0.3014 51 5008 1 2 BA* BS*** 0.5809 0.5441 0.0000 15 11.9929 2.5340 6.4212 0.9986 0.2115 51 5009 1 1 BA* BS*** 1.0325 0.1870 -1.9295 15 9.5678 4.0459 16.3695 0.9981 0.5775 53 1002 1 2 TP1 BS92 1.0332 0.2614 -0.6515 15 8.2445 1.8047 3.2571 0.9997 0.2185 53 1002 2 1 BA* BS** 0.9097 0.2515 -0.3079 15 7.5763 2			2												0.1569
51 5008 1 1 BA* BS** 0.6460 0.4407 -0.0251 15 10.8417 3.2677 10.6778 0.9980 0.3014 51 5008 1 2 BA* BS** 0.5809 0.5441 0.0000 15 11.9929 2.5340 6.4212 0.9986 0.2113 51 5009 1 1 BA* BS** 0.9052 0.1803 0.0000 15 9.5678 4.0459 16.3695 0.9969 0.4225 51 5009 1 2 BA* BS** 1.0322 0.1803 0.0000 15 8.3449 4.8225 23.2565 0.9981 0.5775 53 1002 1 1 BA* BG** 1.1580 0.2142 -0.0474 15 19.2927 2.3819 5.6735 0.9997 0.2185 53 1005 1 1 BA* BS** 0.9097 0.2515 -0.3079 15 7.5763 2.066		_													0.1438
51 5008 1 2 BA* BS** 0.5809 0.5441 0.0000 15 11.9929 2.5340 6.4212 0.9986 0.2115 51 5009 1 1 BA* BS** 0.9052 0.1870 -1.9295 15 9.5678 4.0459 16.3695 0.9969 0.4225 51 5009 1 2 BA* BS** 1.0325 0.1803 0.0000 15 8.3449 4.8225 23.2565 0.9981 0.5775 53 1002 1 2 TP1 BS92 1.0332 0.2614 -0.6515 15 8.2445 1.8047 3.2571 0.9997 0.2185 53 1005 1 1 BA* BS** 0.9097 0.2515 -0.3079 15 7.5763 2.0665 4.2702 0.9996 0.2726 53 1005 1 2 TP1 BS93 0.6142 0.4763 -1.7276 15 8.1492 1.9434<															
51 5009 1 1 BA* BS** 0.9052 0.1870 -1.9295 15 9.5678 4.0459 16.3695 0.9969 0.4225 51 5009 1 2 BA* BS** 1.0325 0.1803 0.0000 15 8.3449 4.8225 23.2565 0.9981 0.5775 53 1002 1 2 TP1 BS92 1.0332 0.2614 -0.6515 15 8.2445 1.8047 3.2571 0.9997 0.2185 53 1002 2 1 BA* BG** 1.1580 0.2142 -0.0474 15 19.2927 2.3819 5.6735 0.9997 0.2235 53 1005 1 2 TP1 BS93 0.6142 0.4763 -1.726 15 8.1492 1.6934 2.8676 0.9990 0.2775 53 1007 1 1 BA* BS*** 0.5906 0.3982 -1.6754 15 7.1094 2.2198															
51 5009 1 2 BA* BS** 1.0325 0.1803 0.0000 15 8.3449 4.8225 23.2565 0.9981 0.5775 53 1002 1 2 TP1 BS92 1.0332 0.2614 -0.6515 15 8.2445 1.8047 3.2571 0.9997 0.2185 53 1002 2 1 BA* BG** 1.1580 0.2142 -0.0474 15 19.2927 2.3819 5.6735 0.9997 0.2185 53 1005 1 1 BA* BS** 0.9097 0.2515 -0.3079 15 7.5763 2.0665 4.2702 0.9995 0.2726 53 1005 1 2 TP1 BS93 0.6142 0.4763 1.7276 15 8.1492 1.6934 2.8676 0.9990 0.2076 53 1007 1 1 BA* BS** 0.5906 0.3952 -1.6754 15 7.1094 2.2198 </td <td></td>															
53 1002 1 2 TP1 BS92 1.0332 0.2614 -0.6515 15 8.2445 1.8047 3.2571 0.9997 0.2185 53 1002 2 1 BA* BG** 1.1580 0.2142 -0.0474 15 19.2927 2.3819 5.6735 0.9997 0.1235 53 1005 1 1 BA* BS** 0.9097 0.2515 -0.3079 15 7.5763 2.0665 4.2702 0.9995 0.2726 53 1005 1 2 TP1 BS93 0.6142 0.4763 -1.7276 15 8.1492 1.6934 2.8676 0.9990 0.2076 53 1007 1 1 BA* BS** 0.5906 0.3952 -1.6754 15 7.1094 2.2198 4.9276 0.9991 0.3122 53 1501 1 2 TP1 BS92 0.7145 0.3614 -1.6793 15 7.8891 1.8544<				_											
53 1002 2 1 BA* BG** 1.1580 0.2142 -0.0474 15 19.2927 2.3819 5.6735 0.9997 0.1235 53 1005 1 1 BA* BS*** 0.9097 0.2515 -0.3079 15 7.5763 2.0665 4.2702 0.9995 0.2726 53 1005 1 2 TP1 BS93 0.6142 0.4763 -1.7276 15 8.1492 1.6934 2.8676 0.9990 0.2076 53 1007 1 1 BA* BS*** 0.5906 0.3952 -1.6754 15 7.1094 2.2198 4.9276 0.9981 0.3122 53 1007 1 2 TP1 BS92 0.7145 0.3614 -1.6793 15 7.8891 1.8544 3.4389 0.9991 0.2351 53 1501 1 2 TP1 BS94 0.7335 0.3038 -1.1522 15 6.7167 1.262				_											
53 1005 1 1 BA* BS** 0.9097 0.2515 -0.3079 15 7.5763 2.0665 4.2702 0.9995 0.2726 53 1005 1 2 TP1 BS93 0.6142 0.4763 -1.7276 15 8.1492 1.6934 2.8676 0.9990 0.2076 53 1007 1 1 BA* BS** 0.5906 0.3952 -1.6754 15 7.1094 2.2198 4.9276 0.9981 0.3122 53 1007 1 2 TP1 BS92 0.7145 0.3614 -1.6793 15 7.8891 1.8544 3.4389 0.9991 0.2361 53 1501 1 2 TP1 BS94 0.7335 0.3038 -1.1522 15 6.7167 1.2622 1.5933 0.9996 0.1876 53 1801 1 1 BA* BS** 0.7999 0.1773 -0.5271 15 5.0029 2.4732 </td <td></td>															
53 1005 1 2 TP1 BS93 0.6142 0.4763 -1.7276 15 8.1492 1.6934 2.8676 0.9990 0.2076 53 1007 1 1 BA* BS** 0.5906 0.3952 -1.6754 15 7.1094 2.2198 4.9276 0.9981 0.3122 53 1007 1 2 TP1 BS92 0.7145 0.3614 -1.6793 15 7.8891 1.8544 3.4389 0.9991 0.2361 53 1501 1 2 TP1 BS94 0.7335 0.3038 -1.1522 15 6.7167 1.2622 1.5933 0.9996 0.1879 53 1801 1 1 BA* BS** 0.7999 0.1773 -0.5271 15 5.0029 2.4732 6.1169 0.9990 0.4944 53 3011 1 1 BA* BS** 0.4703 0.6519 -1.0354 15 9.0649 1.5076 </td <td></td> <td></td> <td></td> <td>_</td> <td></td>				_											
53 1007 1 1 BA* BS** 0.5906 0.3952 -1.6754 15 7.1094 2.2198 4.9276 0.9981 0.3122 53 1007 1 2 TP1 BS92 0.7145 0.3614 -1.6793 15 7.8891 1.8544 3.4389 0.9991 0.2351 53 1501 1 2 TP1 BS94 0.7335 0.3038 -1.1522 15 6.7167 1.2622 1.5933 0.9996 0.1879 53 1801 1 1 BA* BS** 0.7999 0.1773 -0.5271 15 5.0029 2.4732 6.1169 0.9990 0.4944 53 3011 1 1 BA* BS** 0.4274 0.7691 -1.1216 15 9.6249 1.2419 1.5424 0.9992 0.1296 53 3011 1 2 BA* BS** 0.4703 0.6519 -1.0354 15 9.0669 1.5076 </td <td></td> <td>0.2078</td>															0.2078
53 1007 1 2 TP1 BS92 0.7145 0.3614 -1.6793 15 7.8891 1.8544 3.4389 0.9991 0.2361 53 1501 1 2 TP1 BS94 0.7335 0.3038 -1.1522 15 6.7167 1.2622 1.5933 0.9996 0.1875 53 1801 1 1 BA* BS** 0.7999 0.1773 -0.5271 15 5.0029 2.4732 6.1169 0.9990 0.4944 53 3011 1 1 BA* BS** 0.4274 0.7691 -1.1216 15 9.6249 1.2419 1.5424 0.9992 0.1296 53 3011 1 2 BA* BS** 0.4703 0.6519 -1.0354 15 9.0669 1.5076 2.2727 0.9990 0.1674 53 3013 3 2 BA* BG** 0.4146 -0.9199 15 6.5647 2.4144 5.8295 </td <td></td> <td>-</td> <td></td> <td>0.3122</td>		-													0.3122
53 1501 1 2 TP1 BS94 0.7335 0.3038 -1.1522 15 6.7167 1.2622 1.5933 0.9996 0.1876 53 1801 1 1 BA* BS** 0.7999 0.1773 -0.5271 15 5.0029 2.4732 6.1169 0.9990 0.4944 53 3011 1 1 BA* BS** 0.4274 0.7691 -1.1216 15 9.6249 1.2419 1.5424 0.9992 0.1290 53 3011 1 2 BA* BS** 0.4703 0.6519 -1.0354 15 9.0669 1.5076 2.2727 0.9990 0.1674 53 3013 1 1 BA* BS** 0.5114 0.4146 -0.9199 15 6.5647 2.4144 5.8295 0.9976 0.3676 53 3013 3 2 BA* BG** 0.4448 0.6515 -0.1487 15 32.3363 2.1804<				-											0.2351
53 1801 1 1 BA* BS** 0.7999 0.1773 -0.5271 15 5.0029 2.4732 6.1169 0.9990 0.4944 53 3011 1 1 BA* BS** 0.4274 0.7691 -1.1216 15 9.6249 1.2419 1.5424 0.9992 0.1290 53 3011 1 2 BA* BS** 0.4703 0.6519 -1.0354 15 9.0069 1.5076 2.2727 0.9990 0.1674 53 3013 1 1 BA* BS** 0.5114 0.4146 -0.9199 15 6.5647 2.4144 5.8295 0.9976 0.3676 53 3013 3 2 BA* BG** 0.4448 0.6515 -0.1487 15 32.3363 2.1804 4.7541 0.9995 0.0674 53 3014 1 1 BA* BS** 0.4594 0.7331 -1.5977 15 9.2464 2.0269<															
53 3011 1 2 BA* BS** 0.4703 0.6519 -1.0354 15 9.0069 1.5076 2.2727 0.9990 0.1674 53 3013 1 1 BA* BS** 0.5114 0.4146 -0.9199 15 6.5647 2.4144 5.8295 0.9976 0.3676 53 3013 3 2 BA* BG** 0.4448 0.6515 -0.1487 15 32.3363 2.1804 4.7541 0.9995 0.0674 53 3014 1 1 BA* BS** 0.4594 0.7331 -1.5977 15 9.2484 2.0269 4.1083 0.9977 0.2192 53 3019 1 1 BA* BS** 0.5597 0.4670 -1.6887 15 7.5258 2.2056 4.8646 0.9979 0.2931 53 3812 1 1 BA* BS** 0.5340 0.6305 -1.2078 15 9.6026 1.9926<			1							15					
53 3013 1 1 BA* BS** 0.5114 0.4146 -0.9199 15 6.5647 2.4144 5.8295 0.9976 0.3676 53 3013 3 2 BA* BG** 0.4448 0.6515 -0.1487 15 32.3363 2.1804 4.7541 0.9995 0.0674 53 3014 1 1 BA* BS** 0.4594 0.7331 -1.5977 15 9.2484 2.0269 4.1083 0.9977 0.2192 53 3019 1 1 BA* BS** 0.5597 0.4670 -1.6887 15 7.5258 2.2056 4.8646 0.9979 0.2931 53 3019 2 1 BA* BG** 1.1767 0.2875 0.0000 15 30.6498 5.1271 26.2876 0.9991 0.1673 53 3812 1 1 BA* BS** 0.5340 0.6305 -1.2078 15 9.6026 1.9926	53	3011	1	1	BA*	BS**	0.4274	0.7691	-1.1216	15	9.6249	1.2419	1.5424	0.9992	0.1290
53 3013 3 2 BA* BG** 0.4448 0.6515 -0.1487 15 32.3363 2.1804 4.7541 0.9995 0.0674 53 3014 1 1 BA* BS** 0.4594 0.7331 -1.5977 15 9.2484 2.0269 4.1083 0.9977 0.2192 53 3019 1 1 BA* BS** 0.5597 0.4670 -1.6887 15 7.5258 2.2058 4.8646 0.9979 0.2931 53 3019 2 1 BA* BG** 1.1767 0.2875 0.0000 15 30.6498 5.1271 26.2876 0.9991 0.1673 53 3812 1 1 BA* BS** 0.5340 0.6305 -1.2078 15 9.6026 1.9926 3.9705 0.9985 0.2075 53 3813 1 1 BA* BS** 0.3829 0.6385 -1.0895 15 7.1634 1.4574 2.1240 0.9985 0.2034 53 3813 1 2	53	3011	1	2	BA*	BS**	0.4703	0.6519	-1.0354	15	9.0069	1.5076	2.2727	0.9990	0.1674
53 3014 1 1 BA* BS** 0.4594 0.7331 -1.5977 15 9.2484 2.0269 4.1083 0.9977 0.2192 53 3019 1 1 BA* BS** 0.5597 0.4670 -1.6887 15 7.5258 2.2056 4.8646 0.9979 0.2931 53 3019 2 1 BA* BG** 1.1767 0.2875 0.0000 15 30.6498 5.1271 26.2876 0.9991 0.1673 53 3812 1 1 BA* BS** 0.5340 0.6305 -1.2078 15 9.6026 1.9926 3.9705 0.9985 0.2075 53 3813 1 1 BA* BS** 0.3829 0.6385 -1.0895 15 7.1634 1.4574 2.1240 0.9985 0.2034 53 3813 1 2 BA* BS** 0.4382 0.7987 -1.5788 15 9.4793 1.0563<	53	3013	1	1	BA*	BS**	0.5114	0.4146	-0.9199	15	6.5647	2.4144	5.8295	0.9976	0.3678
53 3019 1 1 BA* BS** 0.5597 0.4670 -1.6887 15 7.5258 2.2056 4.8646 0.9979 0.2931 53 3019 2 1 BA* BG** 1.1767 0.2875 0.0000 15 30.6498 5.1271 26.2876 0.9991 0.1673 53 3812 1 1 BA* BS** 0.5340 0.6305 -1.2078 15 9.6026 1.9926 3.9705 0.9985 0.2075 53 3813 1 1 BA* BS** 0.3829 0.6385 -1.0895 15 7.1634 1.4574 2.1240 0.9985 0.2034 53 3813 1 2 BA* BS** 0.4382 0.7987 -1.5788 15 9.4793 1.0563 1.1157 0.9994 0.1114 53 3813 3 1 BA* BG** 1.1284 0.3111 -0.0801 15 29.9844 6.1666 38.0271 0.9985 0.2057			3				0.4448								
53 3019 2 1 BA* BG** 1.1767 0.2875 0.0000 15 30.6498 5.1271 26.2876 0.9991 0.1676 53 3812 1 1 BA* BS** 0.5340 0.6305 -1.2078 15 9.6026 1.9926 3.9705 0.9985 0.2076 53 3813 1 1 BA* BS** 0.3829 0.6385 -1.0895 15 7.1634 1.4574 2.1240 0.9985 0.2034 53 3813 1 2 BA* BS** 0.4382 0.7987 -1.5788 15 9.4793 1.0563 1.1157 0.9994 0.1114 53 3813 3 1 BA* BG** 1.1284 0.3111 -0.0801 15 29.9844 6.1666 38.0271 0.9985 0.2057															0.2192
53 3812 1 1 BA* BS** 0.5340 0.6305 -1.2078 15 9.6026 1.9926 3.9705 0.9985 0.2076 53 3813 1 1 BA* BS** 0.3829 0.6385 -1.0895 15 7.1634 1.4574 2.1240 0.9985 0.2034 53 3813 1 2 BA* BS** 0.4382 0.7987 -1.5788 15 9.4793 1.0563 1.1157 0.9994 0.1114 53 3813 3 1 BA* BG** 1.1284 0.3111 -0.0801 15 29.9844 6.1666 38.0271 0.9985 0.2057															
53 3813 1 1 BA* BS** 0.3829 0.6385 -1.0895 15 7.1634 1.4574 2.1240 0.9985 0.2034 53 3813 1 2 BA* BS** 0.4382 0.7987 -1.5788 15 9.4793 1.0563 1.1157 0.9994 0.1114 53 3813 3 1 BA* BG** 1.1284 0.3111 -0.0801 15 29.9844 6.1666 38.0271 0.9985 0.2057															
53 3813 1 2 BA* BS** 0.4382 0.7987 -1.5788 15 9.4793 1.0563 1.1157 0.9994 0.1114 53 3813 3 1 BA* BG** 1.1284 0.3111 -0.0801 15 29.9844 6.1666 38.0271 0.9985 0.2057															
53 3813 3 1 BA* BG** 1.1284 0.3111 -0.0801 15 29.9844 6.1666 38.0271 0.9985 0.2057															
i na i antai a 12 i BATI - BOTT 101691 (11916) 4114971 15 i 1244081 119671 339788 (10098) (1147)	53	3813	3	2	BA*	BG**	1.0159	0.3111	-0.1497	15	12.4308	1.8367	3.3736	0.9998	

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

		T .	r=				1							
State	SHRP	Layer No.	Test No.	Loc. No.	Sample No.	k1	k2	k3	No. Points	Std Dev(M _R)	RMSE	MSE	R ²	S _e /S _v
53	6020	1	1	BA*	BS**	0.7318	0.2985	-1.2997	15	7.0020	2.2530	5.0762	0.9988	0.3218
53	6020	1	2	TP1	BS93	0.8172	0.1737	-0.5986	15	5.0634	2.4790	6.1455	0.9990	0.4896
53	6048	1	1	BA*	BS**	0.4495	0.5742	-2.3301	15	7.1434	2.2914	5.2506	0.9960	0.3208
53	6048	1	2	TP1	BS93	0.2750	0.6909	-1.3540	15	5.4755	1.5383	2.3664	0.9966	0.2809
53	6056	1	1	BA*	BS**	0.5908	0.2718	-2.1214	15	6.4461	1.3607	1.8514	0.9991	0.2111
53	7322	1	1	A1	TS01	0.4421	0.3624	-3.0458	15	6.0222	1.4826	2.1981	0.9977	0.2462
53	7322	1	2	A2	TS03	0.6621	0.1988	-1.6438	15	5.8611	1.1943	1.4263	0.9995	0.2038
54	1640	1	2	TP	BS55	0.5410	0.0700	-4.9047	15	8.6932	4.1059	16.8585	0.9827	0.4723
54	1640	2	2	TP	BG55	0.9178	0.4477	-0.5587	15	27.5491	12.1551	147.7459	0.9908	0.4412
54	4003	1	1	BA*	BS**	1.0716	0.2435	-1.1424	15	10.0702	5.4886	30.1248	0.9968	0.5450
54	4003	1	2	BA*	BS**	0.8170	0.4793	-1.4548	15	11.5214	4.2115	17.7367	0.9967	0.3655
54	4004	1	2	BA*	BS**	1.4203	0.3066	-1.5908	15	14.7593	5.1961	26.9992	0.9982	0.3521
54	5007	1	1	BA*	BS**	1.1742	0.2740	-1.4721	15	10.8803	2.6045	6.7836	0.9993	0.2394
54	5007	1	2	BA*	BS**	0.9846	0.2224	-1.2891	15	8.8048	4.1543	17.2580	0.9977	0.4718
54	7008	1	1	BA*	BS**	1.0362	0.2487	-1.1386	15	9.8261	5.2988	28.0776	0.9968	0.5393
54	7008	1	2	BA*	BS**	0.8841	0.2236	-0.8756	15	7.8667	4.8688	23.7053	0.9966	0.6189
54	7008	2	1	BA*	BG**	0.9816	0.5243	-0.5753	14	34.2041	5.5294	30.5744	0.9986	0.1617
54	7008	2	2	BA*	BG**	1.1749	0.4853	-0.7702	15	32.2399	8.3627	69.9350	0.9971	0.2594
55	3008	1	1	A1	TS01	1.0364	0.2578	-3.0994	15	13.6887	1.6237	2.6364	0.9995	0.1186
55	3008	1	2	A2	TS03 BG**	1.5196	0.1800	-1.5251	15	12.4453	1.1405	1.3007	0.9999	0.0916
55 55	3008	2	2	BA* BA*	BG**	0.8042 0.7533	0.6120 0.6921	0.0000	15	58.8891	7.7725	60.4117	0.9980	0.1320
55	3009	1	1	A1	TS01	1.4634	0.8921	0.0000 -1.8229	15 15	67.7589 13.4996	11.4098	130.1831 0.8411	0.9960	0.1684
55	3009	1	2	A2	TS03	1.2469	0.1538	-2.1802	15	13.2927	0.9171 1.4383	2.0686	0.9999	0.0679 0.1082
55	3009	2	1	BA*	BG**	0.5777	0.6857	0.0000	15	51,4322	13.4270	180.2853	0.9906	0.1082
55	3009	2	2	BA*	BG**	0.6681	0.6862	0.0000	15	58.9962	7.1587	51.2468	0.9980	0.1213
55	3010	1	1	BA*	BS**	1.2473	0.5325	-1.8301	15	17.8904	2.6231	6.8807	0.9994	0.1466
55	3010	1	2	BA*	BS**	1.5658	0.5045	-2.1686	15	21.7573	4.2054	17.6852	0.9989	0.1933
55	3010	2	1	BA*	BG**	0.6437	0.6906	-0.0160	14	52.1159	4.4055	19.4084	0.9991	0.0845
55	3010	2	2	BA*	BG**	0.8599	0.6231	-0.0681	15	61.9789	4.5754	20.9343	0.9994	0.0738
55	3012	1	2	BA*	BS**	0.8230	0.2729	-2.8097	15	10.3003	2.0583	4.2367	0.9988	0.1998
55	3012	2	2	BA*	BG**	0.6331	0.7364	-0.3018	15	51.1471	6.0547	36.6597	0.9982	0.1184
55	3014	2	1	BA⁺	BG**	0.7819	0.6045	-0.0046	15	55.9243	7.2832	53.0456	0.9981	0.1302
55	3014	2	2	BA*	BG**	0.7512	0.5633	0.0000	15	48.6824	8.6258	74.4042	0.9968	0.1772
55	3015	1	1	BA*	BS**	0.7631	0.7279	-0.9364	15	17.0665	4.5660	20.8484	0.9967	0.2675
55	3015	1	2	BA*	BS**	0.6826	0.7608	-0.7822	14	17.7151	6.2238	38.7362	0.9929	0.3513
55	3015	2	1	BA*	BG**	0.9702	0.5662	-0.1432	15	55.9959	8.9043	79.2863	0.9977	0.1590
55	3015	2	2	BA*	BG**	1.1878	0.4978	-0.0056	14	64.6290	6.6199	43.8224	0.9991	0.1024
55	3016	1	1	BA*	BS**	0.6840	0.7019	-0.8075	15	15.2628	4.1441	17.1737	0.9967	0.2715
55	3016	1	2	BA*	BS**	0.6764	0.7193	-0.7304	15	15.4155	2.8375	8.0514	0.9985	0.1841
55	3016	2	2	BA*	BG**	0.7246	0.6876	-0.1759	15	56.2122	8.0877	65.4113	0.9974	0.1439
55	3019	1	1	BA*	BS**	0.5193	0.8105	-1.2897	15	12.1459	2.5929	6.7230	0.9975	0.2135
55	3019	1	2	BA*	BS**	0.6382	0.7629	-1.0202	15	14.6164	2.3123	5.3466	0.9988	0.1582
55	3019	2	1	BA*	BG**	0.4696	0.8899	-0.2831	14	51.4534	3.3349	11.1218	0.9993	0.0648
55 55	3019	2	2	BA*	BG**	0.5305	0.8181	-0.3522	14	47.6593	4.0321	16.2575	0.9989	0.0846
55 55	5037 5037	1	1 2	BA*	BS**	0.8135 0.7853	0.7130	-0.9439	15 14	17.6856	3.9672	15.7389	0.9978	0.2243
55	5037	2	1	BA*	BG**	0.7853	0.7247	-0.7567 -0.1476	15	18.7183 59.9553	4.5417 5.0251	20.6273 25.2513	0.9971	0.2426 0.0838
55	5037	2	2	BA*	BG**	1.0646	0.4485	-0.0399	15	47.6517	8.7476	76.5197	0.9977	0.0836
55	5037	3	1	BA*	BG**	0.7199	0.6375	-0.1297	15	50.9659	8.0997	65.6049	0.9971	0.1589
55	5037	3	2	BA*	BG**	0.8673	0.6144	-0.0728	15	60.2130	9.7125	94.3333	0.9971	0.1613
55	5040	1	1	A1	TS01	0.7496	0.1026	-2.8290	15	9.5857	0.9551	0.9121	0.9997	0.0996
55	5040	1	2	A2	TS03	0.8517	0.2111	-1.7295	15	7.7257	0.8908	0.7935	0.9998	0.1153
55	5040	2	1	BA*	BG**	1.0359	0.5645	0.0000	15	66.9965	4.4413	19.7249	0.9995	0.0663
55	5040	2	2	BA*	BG**	1.1836	0.5859	-0.0435	14	73.1520	4.2972	18.4657	0.9997	0.0587
55	6351	1	1	BA*	BS**	1.0151	0.6627	-2.0042	15	17.6230	3.2109	10.3098	0.9987	0.1822

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

<u> </u>	61155				0				N1-	<u> </u>				
State Code	SHRP	Layer No.	Test No.	Loc. No.	Sample No.	k1	k2	k3	No. Points	Std Dev(M _R)	RMSE	MSE	R²	S _• /S _v
55	6351	1	2	BA*	BS**	1.2305	0.2870	-2.6085	15	14.8346	1.5503	2,4034	0.9997	0.1045
55	6351	2	1	BA*	BG**	0.6835	0.7305	0.0000	15	66.6113	9.1991	84.6238	0.9972	0.1381
55	6351	2	2	BA*	BG**	0.9798	0.7303	-0.0698	15	51.2385	9.9352	98.7080	0.9969	0.1939
·			1		BG**	0.8347		0.0000			8.2268			
55	6352	2		BA*			0.5834		15	56.4563		67.6804	0.9977	0.1457
55	6352	2	2	BA*	BG**	0.9457	0.5664	-0.0925	15	56.7607	8.0662	65.0632	0.9981	0.1421
55	6352	3	2	BA*	BG**	1.1559	0.5722	-0.1505	15	67.3348	12.7446	162.4252	0.9967	0.1893
55	6353	2	1	BA*	BG**	0.9507	0.5942	0.0000	15	66.3937	5.2340	27.3943	0.9993	0.0788
55	6353	2	2	BA*	BG**	1.0573	0.5146	0.0000	15	59.2497	6.9840	48.7768	0.9988	0.1179
55	6353	3	1	BA*	BG**	0.8055	0.6693	-0.0362	14	61.0869	7.2402	52.4203	0.9983	0.1185
55	6353	3	2	BA*	BG**	1.1817	0.6066	-0.0133	15	84.8340	6.0394	36.4741	0.9994	0.0712
55	6354	2	1	BA*	BG**	1.0734	0.4901	-0.1456	15	49.3421	9.0026	81.0461	0.9976	0.1825
55	6354	2	2	BA*	BG**	0.7629	0.7229	-0.0283	15	72.0614	6.5750	43.2305	0.9988	0.0912
55	6354	3	1	BA*	BG**	0.7439	0.6535	0.0000	15	60.2026	8.2956	68.8174	0.9976	0.1378
55	6354	3	2	BA*	BG**	0.8589	0.6627	-0.0457	14	63.8479	5.7972	33.6070	0.9990	0.0908
55	6355	2	1	BA*	BG**	1.0170	0.5238	0.0000	15	58.5945	6.7882	46.0799	0.9988	0.1159
55	6355	3	1	BA*	BG**	1.0764	0.5262	0.0000	15	62.2665	11.2502	126.5672	0.9970	0.1807
55	6355	3	2	BA⁺	BG**	0.8631	0.6657	-0.2543	14	57.0610	8.0976	65.5706	0.9978	0.1419
56	1007	1	1	BA*	BS**	0.5267	0.6435	-1.6153	15	9.1626	1.9697	3.8797	0.9983	0.2150
56	1007	11	2	TP1	8892	0.3757	0.6902	-1.1476	15	7.6799	2.2477	5.0520	0.9963	0.2927
56	2015	1	1	BA*	BS**	0.7355	0.2501	-0.7573	15	5.9785	2.4038	5.7781	0.9988	0.4021
56	2015	2	1	BA*	BS**	0.8038	0.3029	-0.2500	15	16.8254	5.2887	27.9698	0.9975	0.3143
56	2015	2	2	TP1	BS91	0.5109	0.6047	-0.3357	15	28.2256	5.2655	27.7260	0.9969	0.1866
56	2017	1	1	BA*	BS**	0.9145	0.1653	-0.6342	15	5.0124	1.4839	2.2019	0.9997	0.2960
56	2017	1	2	A2	TS03	0.8373	0.1439	-1.0321	15	5.2626	1.3780	1.8988	0.9997	0.2618
56	2017	1	2	TP1	BS91	0.9368	0.1288	-1.2572	15	6.6783	1.5417	2.3767	0.9996	0.2308
56	2018	1	1	BA*	BS**	0.6951	0.2164	-0.4344	15	5.0266	2.0530	4.2150	0.9991	0.4084
56	2018	1	2	A2	TS03	0.6300	0.3023	-2.6856	15	7.8510	1.5721	2.4716	0.9988	0.2002
56	2018	1	2	TP1	BS92	0.8120	0.1932	-1.5868	15	7.0122	1.1781	1.3879	0.9997	0.1680
56	2019	1	1	A1	TS01	0.5839	0.2582	-3.4133	15	8.0166	1.4579	2.1256	0.9986	0.1819
56	2019	1	1	BA*	BS**	0.8127	0.1588	-0.0702	15	4.7809	1.5786	2.4921	0.9997	0.3302
56	2019	3	1	BA*	BG**	0.7843	0.3780	-0.3117	15	20.9982	4.7261	22.3361	0.9981	0.2251
56	2019	3	2	TP1	BG91	0.4929	0.6218	-0.4144	15	26.9970	5.1264	26.2801	0.9967	0.1899
56	2020	1	1	BA*	BS**	0.9256	0.1478	0.0000	15	5.6044	2.5155	6.3276	0.9994	0.4488
56	2020	1	2	TP1	BS91	0.8684	0.1470	-1.0685	15	5.7998	1.9816	3.9266	0.9994	0.3417
56	2037	1	1	BA*	BS**	0.7543	0.1982	-1.1134	15	5.7998	2.3292	5.4254	0.9988	0.4016
56	2037	1	2	TP1	BS91	0.6440	0.3430	-2.1612	15	7.7016	2.3682	5.6084	0.9979	0.3075
56	6031	1	1	BA*	BS**	0.9141	0.1899	0.0000	15	8.5038	5.6761	32.2186	0.9967	0.6675
56	6031	1	2	TP1	BS91	0.9185	0.1802	0.0000	15	7.2493	3.9686	15.7501	0.9984	0.5475
56	7772	1	1	BA*	BS**	0.8610	0.1257	-0.5661	15	4.0708	1.8172	3.3022	0.9995	0.4464
56	7772	1	2	TP1	BS91	0.8466	0.1269	-0.5322	15	4.6823	2.5486	6.4954	0.9991	0.5443
56	7773	1	1	BA*	BS**	0.5958	0.1408	-1.2315	15	9.6870	2.0090	4.0363	0.9987	0.2074
56	7773	1	2	TP1	BS92	0.7844	0.2339	-0.5387	15	5.8538	1.9482	3.7953	0.9994	0.3328
56	7773	2	2	TP1	BG91	0.7720	0.4443	-0.3367	15	27.6469	4.2579	18.1297	0.9987	0.3528
56	7775	1	1	BA*	BS**	0.7720	0.4984	-1.8745	15	6.8917	2.2835	5.2143	0.9969	0.1540
	7775	1				0.4621	0.4254						0.9984	0.3313
56 72		1	1	TP1	BS92			-1.7583	15	7.6295	2.0629	4.2556	0.9984	
	1003			A1	TS01	0.7677	0.1314	-2.0330	15	8.1141	3.5550	12.6377 35.5445		0.4381
72	1003	2	2	BA*	BG**	0.7733	0.6425	-0.1222	15	56.5290	5.9619		0.9987	0.1055
72	3008	2	1	BA*	BG**	1.0268	0.5676	-0.0038	15	67.1298	7.3403	53.8794	0.9988	0.1093
72	3008	2	2	BA*	BG**	0.5267	0.7757	0.0000	15	58.6135	12.4299	154.5012	0.9925	0.2121
72	4121	1	1	BA*	85**	1.9106	0.5216	-2.5055	15	27.2654	4.8949	23.9605	0.9989	0.1795
72	4121	1	2	BA*	BS**	1.2027	0.4161	-0.8498	15	15.8685	6.5074	42.3464	0.9969	0.4101
72	4121	2	2	BA*	BG**	1.5485	0.5749	-0.5376	15	67.3378	12.7083	161.5020	0.9974 0.9964	0.1887
72 72	4122 4122	1	2	BA* BA*	BS**	1.2098	0.2621	-0.4862 0.0000	15 15	12.2397	7.2895 13.7886	53.1373 190.1261	0.9964	0.5956 0.7199
72	4122	2	. 1	BA*	BG**	1.1082	0.5559	-0.2774	15	19.1528 55.8261	5.9029	34.8440	0.9991	0.1057
72	4122	2	2	BA*	BG**	1.4196	0.3703	0.0000	15	52.0171	16.3563	267.5274	0.9947	0.3144

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

State	SHRP	Layer	Test	Loc.	Sample				No.	Std				
Code	ID	No.	No.	No.	No.	k1	k2	k3	Points	Dev(M _R)	RMSE	MSE	R ²	S _e /S _v
81	0502	1	1	B*	BS**	1.3128	0.2273	-1.4959	14	9.5791	1.4157	2.0043	0.9998	0.1478
81	0503	1	1	TP1	BS92	0.8891	0.2260	-2.2604	15	9.5907	1.2887	1.6609	0.9996	0.1344
81	1803	- 1	1	BA*	BS**	0.5780	0.6098	-1.0072	15	10.3845	1.7088	2.9199	0.9991	0.1645
81	1803	1	2	TP1	BS92	0.9559	0.1613	-0.6140	15	5.2327	1.8642	3.4754	0.9996	0.3563
81	1804	1	2	A2	TS01	0.7127	0.1848	-2.3735	15	7.8891	0.9652	0.9317	0.9997	0.1224
81	1805	1	1	BA*	BS**	0.8268	0.1422	-0.6674	15	4.4955	2.0442	4.1789	0.9993	0.4547
81	1805	1	2	A2	TS01	0.8676	0.1668	-1.4833	15	6.9864	1.3319	1.7740	0.9997	0.1906
81	2812	1	2		TS01	0.6117	0.1241						0.9984	
		1	2	A2				-0.1113	15	3.6095	2.5915	6.7159		0.7180
82	1005			TP1	BS93	0.4579	0.7072	-0.9901	15	9.6545	1.6413	2.6940	0.9988	0.1700
82	6006	1	1	BA*	BS**	0.4297	0.7591	-1.0445	15	9.6644	1.1709	1.3711	0.9993	0.1212
82	6006	2	2	TP1	BS91	0.3899	0.6125	-0.0975	15	26.6723	1.4002	1.9605	0.9997	0.0525
83	3802	3	1	TP*	BG**	0.6763	0.6963	0.0000	15	61.2728	4.4651	19.9374	0.9993	0.0729
83	3802	3	2	TP*	BG**	0.5925	0.7617	-0.0055	15	62.6748	4.6906	22.0020	0.9991	0.0748
83	6452	2	1	TP*	BG**	0.8337	0.6163	0.0000	15	61.4362	7.8370	61.4187	0.9981	0.1276
83	6452	2	2	TP*	BG**	0.8576	0.5819	0.0000	15	57.9362	7.7898	60.6808	0.9981	0.1345
84	1684	1	1	BA*	BS**	0.5179	0.5416	-0.7282	15	9.0528	2.5916	6.7165	0.9976	0.2863
84	1684	1	2	TP	BS55	0.7465	0.5157	-1.6855	15	11.0143	3.5974	12.9413	0.9970	0.3266
84	1684	2	1	BA*	BG**	0.4921	0.7761	-0.2031	14	48.7783	4.3794	19.1794	0.9987	0.0898
84	1802	1	1	BA*	BS**	0.9406	0.5042	-2.4537	15	13.8554	4.2982	18.4745	0.9965	0.3102
84	3803	1	1	BA*	BS**	1.0566	0.6190	-2.6651	15	17.7074	4.8586	23.6060	0.9964	0.2744
84	3803	1	2	BA*	BS**	1.5316	0.2817	-2.8357	15	19.1254	2.9740		0.9993	
84	6804	1	1	BA*	BS**	2.3059						8.8446		0.1555
					BS**		0.5146	-4.3315	15	38.5662	10.4900	110.0405	0.9943	0.2720
87	1620		1	BA*		1.0184	0.1279	-1.2565	15	8.3666	4.5074	20.3167	0.9975	0.5387
87	1622	1	1	BA*	BS**	1.0448	0.5029	-1.5132	15	14.4799	2.4721	6.1114	0.9993	0.1707
87	1622	1	2	TP	BS55	0.8343	0.3742	-0.9775	15	9.6323	3.4832	12.1327	0.9981	0.3616
87	1622	2	1	BA*	BG**	0.7437	0.6665	-0.3225	15	49.6466	3.0995	9.6069	0.9996	0.0624
87	1680	1	1	BA*	BS**	0.8394	0.6361	-1.4016	14	14.9122	2.4080	5.7984	0.9990	0.1615
87	1680	1	2	TP	BS55	1.0324	0.3501	-1.2024	15	11.0510	3.9020	15.2256	0.9983	0.3531
87	1680	2	2	TP	BG56	0.6671	0.7649	-0.2925	15	58.0769	4.8198	23.2306	0.9990	0.0830
87	1806	1	1	BA*	BS**	0.8891	0.6522	-1.8377	15	15.4689	3.0128	9.0770	0.9985	0.1948
87	2811	1	1	BA*	BS**	0.7644	0.0000	-1.2744	15	8.4420	6.0481	36.5792	0.9917	0.7164
87	2811	1	2	BA4	BS04	1.0321	0.2468	-3.7740	15	15.1510	3.7047	13.7249	0.9967	0.2445
87	2812	1	1	BA*	BS**	0.7722	0.3124	-5.6702	15	11.7951	2.4417	5.9619	0.9963	0.2070
87	2812	1	2	BA*	BS**	0.8875	0.2427	-5.1568	15	14.4166	1.7407	3.0301	0.9986	0.1207
88	1645	1	1	BA*	BS**	0.5575	0.5673	-1.8587	14	9.1378	3.0354	9.2136	0.9960	0.3322
		1	2	TP	BS55									
88	1645		_			1.0514	0.3470	-2.4734	15	13.5024	4.2005	17.6442	0.9972	0.3111
88	1646	1	1	BA*	BS**	0.8683	0.3856	-2.8835	15	12.1859	4.4038	19.3934	0.9950	0.3614
88	1646	1	2	TP	BS55	0.6209	0.4368	-1.5422	15	8.1105	2.9942	8.9652	0.9970	0.3692
88	1647	1	2	TP	BS55	0.9317	0.2328	-1.5853	15	9.1251	4.0036	16.0289	0.9974	0.4387
89	1021	1	1	BA*	BS**	0.8247	0.5784	-1.0241	15	13.8763	2.0789	4.3216	0.9993	0.1498
89	1021	1	2	TP	BS55	0.6993	0.5953	-0.7918	15	12.7025	1.9984	3.9934	0.9992	0.1573
89	1125	1	1	BA*	BS**	0.8009	0.7689	-1.3846	15	17.2552	2.4522	6.0135	0.9990	0.1421
89	1125	1.	2	TP	BS55	0.6521	0.6448	-0.7963	15	12.8612	1.9143	3.6646	0.9992	0.1488
89	1125	2	1	BA*	BG**	0.6902	0.6806	-0.0818	15	57.3803	3.4760	12.0829	0.9995	0.0606
89	1125	2	2	TP	BG57	0.7417	0.6761	-0.2235	15	54.7011	2.9181	8.5151	0.9997	0.0533
89	1127	1	1	BA*	BS**	0.7183	0.5634	-0.9276	15	12.1000	2.8263	7.9878	0.9984	0.2336
89	1127	2	1	ВАЗ	BG03	0.5767	0.7112	-0.3218	15	43.4476	2.6671	7.1134	0.9995	0.0614
89	1127	2	2	TP	BG56	0.5373	0.7512	-0.3205	15	44.5018	4.0575	16.4632	0.9989	0.0912
89	3001	1	1	BA*	BS**	0.5224	0.6329	-0.7970	15	10.2711	1.5581	2.4276	0.9992	0.1517
89	3001	1	2	BA*	BS**	0.6467	0.6037	-0.8812	15	11.7830	2.2201	4.9289	0.9988	0.1884
89	3001	2	2	BA*	BG**	0.5924	0.6600	-0.2148	15	42.3901	3.9292	15.4384	0.9990	0.0927
89	3002	1	1	BA*	BS**	0.8047	0.5151	-1.4386	15	12.1800	4.3839	19.2183	0.9964	0.3599
89	3015	-	1	BA*	BS**	0.6002	0.6961	-0.6166	15					
89	3015	1	2	BA*	BS**					13.5366	2.4707	6.1042	0.9986	0.1825
						0.8164	0.5880	-1.0565	15	14.0635	2.8041	7.8629	0.9988	0.1994
89	9018		1	BA*	BS**	0.7245	0.4851	-0.5827	15	11.1663	2.1725	4.7198	0.9992	0.1946
89	9018	1	2	BA*	BS**	0.7180	0.4582	-0.7045	15	10.6077	3.8728	14.9983	0.9972	0.3651

Table 16. k-values determined from nonlinear regression analyses of LTPP resilient modulus test of unbound materials (continued).

State Code	SHRP ID	Layer No.	Test No.	Loc. No.	Sample No.	- k1	k2	kЗ	No. Points	Std Dev(M _R)	RMSE	MSE	R²	S _e /S _v
90	6400	1	1	TP*	BS**	0.9157	0.6394	-1.1130	15	16.6942	2.6427	6.9841	0.9991	0.1583
90	6400	1	2	TP*	BS**	0.8282	0.5789	-1.1381	15	13.6706	2.4851	6.1757	0.9990	0.1818
90	6405	3	1	TP*	BG**	0.7461	0.7024	-0.0178	15	68.1338	3.8397	14.7434	0.9995	0.0564
90	6405	. 3	2	TP*	BG**	1.4688	0.5246	-0.2743	15	68.1394	16.7181	279.4952	0.9955	0.2454
90	6801	1	1	TP*	BS**	1.5200	0.2122	-1.2996	15	11.7380	1.4006	1.9617	0.9999	0.1193
90	6801	1	2	TP*	BS**	0.9887	0.3140	0.0000	15	11.9575	3.6365	13.2241	0.9989	0.3041

^{* -} Reference to LTPP Database Code List

^{** -} Reference to LTPP Database Code List

APPENDIX B.

GRAPHICAL EXAMPLES OF THE DIFFERENT TYPES OF ANOMALIES IDENTIFIED IN THE RESILIENT MODULUS TEST DATA

Appendix B provides graphical examples of the different types of anomalies identified in the resilient modulus test data. The following gives a brief description of the graphical examples included in this appendix:

- Figures 34 through 37 show excess softening or potential disturbance of the test specimen for the higher vertical loads. These resilient modulus tests could be "good" data, but the universal constitutive equation does not fit the test data.
- Figures 38 through 41 provide graphical examples of the resilient modulus tests with a significant effect of the confining pressure that varies with the vertical loads used in the test program. These tests could be "good" data, but the universal constitutive equation does not represent a good fit to the test data.
- Figures 42 through 45 provide graphical examples of the resilient modulus tests with a sudden drop and then an increase in the resilient modulus measured at increasing vertical loads.
- Figures 46 through 49 provide graphical examples of the resilient modulus tests with relationships between resilient modulus and vertical loads for different confining pressures that intersect or have completely different stress sensitivity effects.
- Figures 50 through 53 provide graphical examples of the resilient modulus tests where the higher confining pressures result in a lower resilient modulus.
- Figures 54 through 57 provide graphical examples of the resilient modulus tests where the resilient modulus is independent of the confining pressure at the lowest vertical load used in the test program.
- Figures 58 through 61 provide graphical examples of the resilient modulus tests with possible data entry errors.

Figure 34. Sample from test section 010111, layer 1, at the leave end exhibits specimen distortion or excess softening.

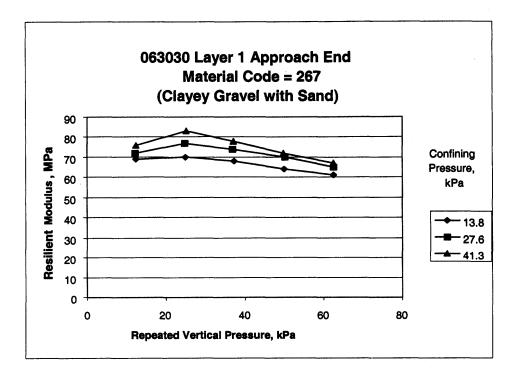


Figure 35. Sample from test section 063030, layer 1, at the approach end exhibits specimen distortion or excess softening.

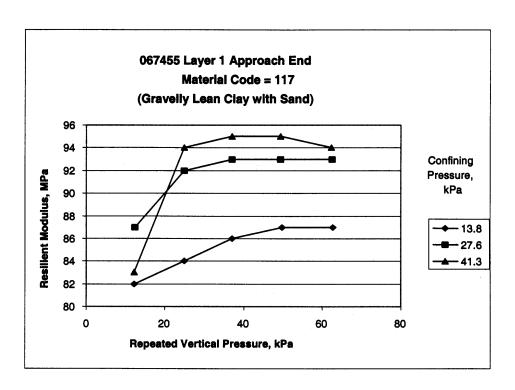


Figure 36. Sample from test section 067455, layer 1, at the approach end exhibits specimen distortion or excess softening.

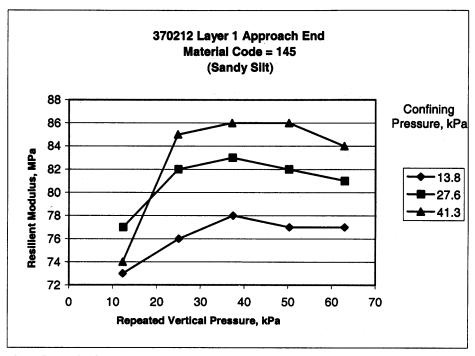


Figure 37. Sample from test section 370212, layer 1, at the approach end exhibits specimen distortion or excess softening.

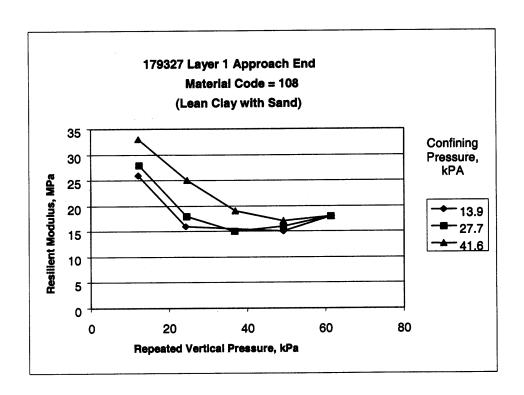


Figure 38. Sample from test section 179327, layer 1, at the approach end shows significant effect of confining pressure on resilient modulus.

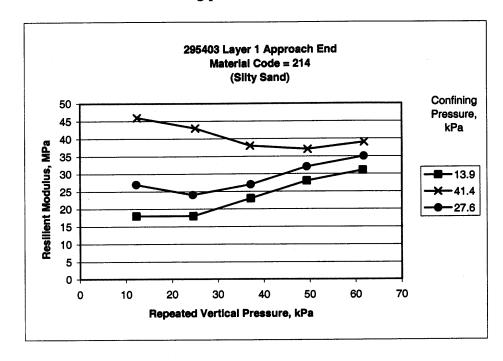


Figure 39. Sample from test section 295403, layer 1, at the approach end shows significant effect of confining pressure on resilient modulus.

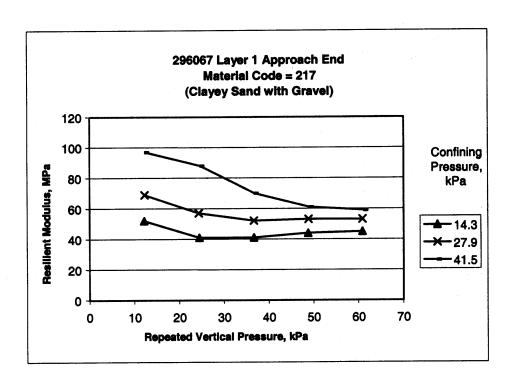


Figure 40. Sample from test section 296067, layer 1, at the approach end shows significant effect of confining pressure on resilient modulus.

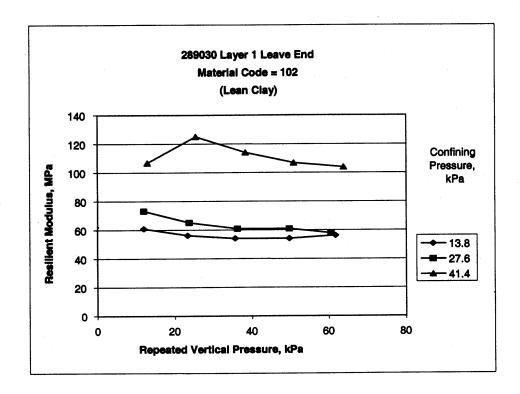


Figure 41. Sample from test section 289030, layer 1, at the leave end shows significant effect of confining pressure on resilient modulus.

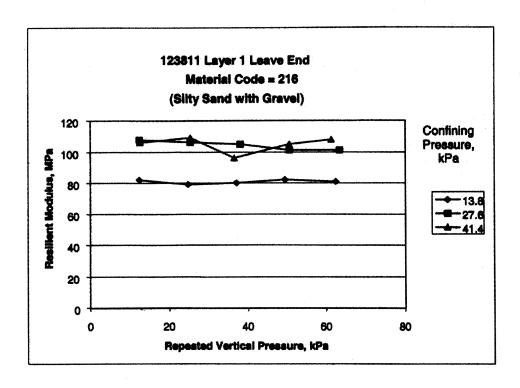


Figure 42. Sample from test section 123811, layer 1, at the leave end shows sudden drop and then increase in resilient modulus.

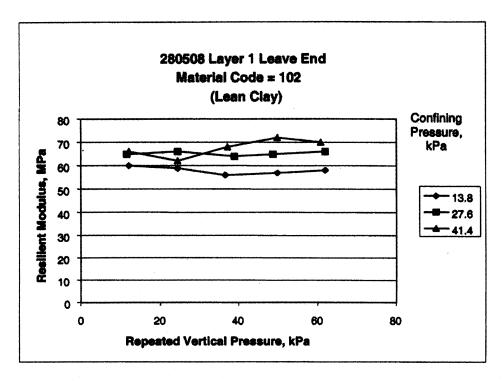


Figure 43. Sample from test section 280508, layer 1, at the leave end shows sudden drop and then increase in resilient modulus.

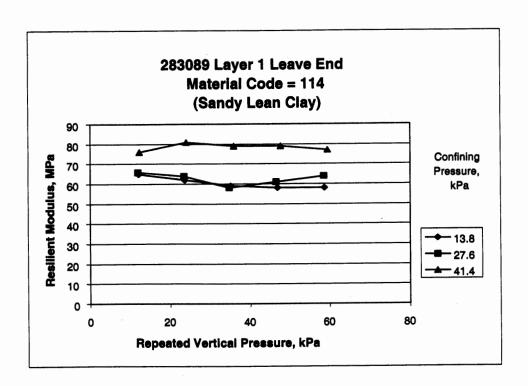


Figure 44. Sample from test section 283089, layer 1, at the leave end shows sudden drop and then increase in resilient modulus.

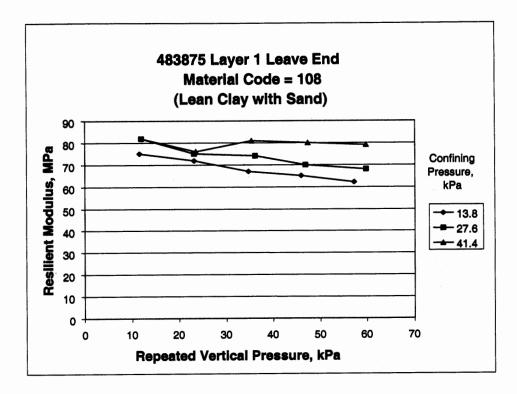


Figure 45. Sample from test section 483875, layer 1, at the leave end shows sudden drop and then increase in resilient modulus.

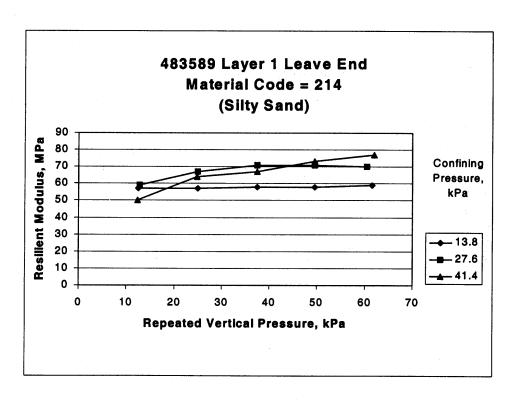


Figure 46. Sample from test section 483589, layer 1, at the leave end exhibiting localized softening or disturbance of the specimen during the test or LVDT movement.

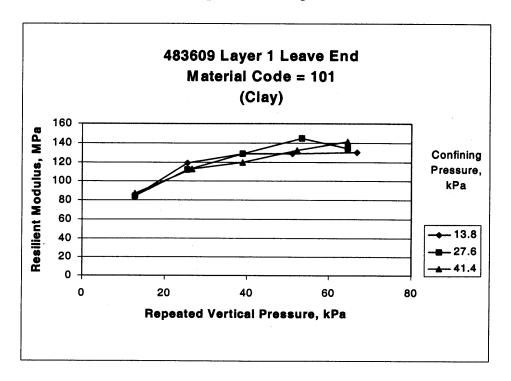


Figure 47. Sample from test section 483609, layer 1, at the leave end exhibiting localized softening or disturbance of the specimen during the test or LVDT movement.

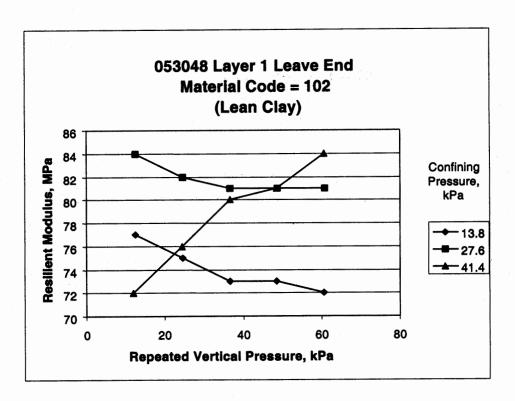


Figure 48. Sample from test section 053048, layer 1, at the leave end exhibiting localized softening or disturbance of the specimen during the test or LVDT movement.

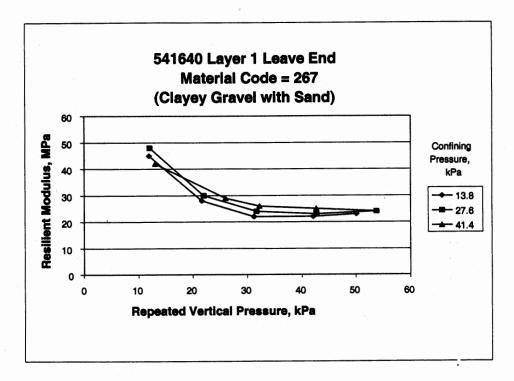


Figure 49. Sample from test section 541640, layer 1, at the leave end exhibiting localized softening or disturbance of the specimen during the test or LVDT movement.

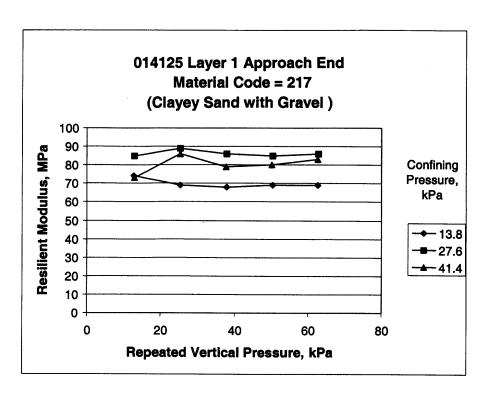


Figure 50. Sample from test section 014125, layer 1, at the approach end shows higher confining pressures result in lower resilient modulus.

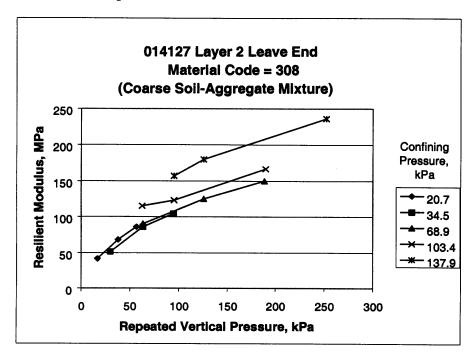


Figure 51. Sample from test section 014127, layer 1, at the leave end shows higher confining pressures result in lower resilient modulus.

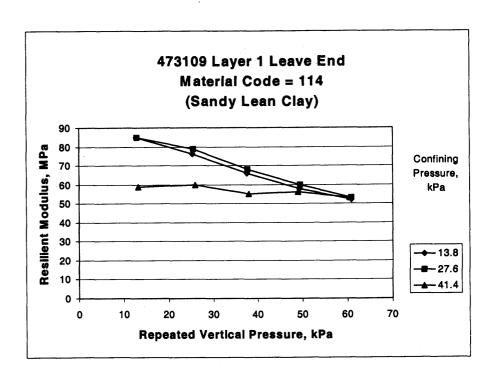


Figure 52. Sample from test section 473109, layer 1, at the leave end shows higher confining pressures result in lower resilient modulus.

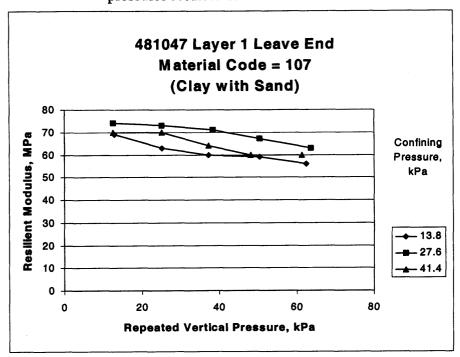


Figure 53. Sample from test section 481047, layer 1, at the leave end shows higher confining pressures result in lower resilient modulus.

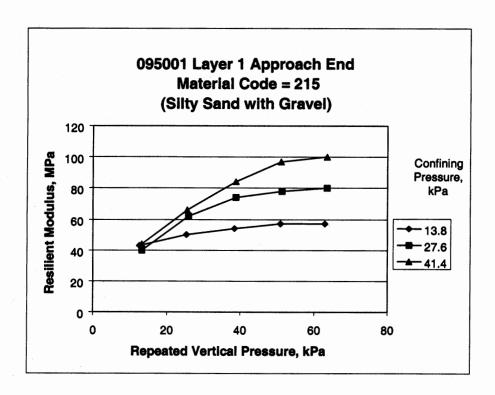


Figure 54. Sample from test section 095001, layer 1, at the approach end shows that resilient modulus is independent of confining pressure at the lowest vertical stress.

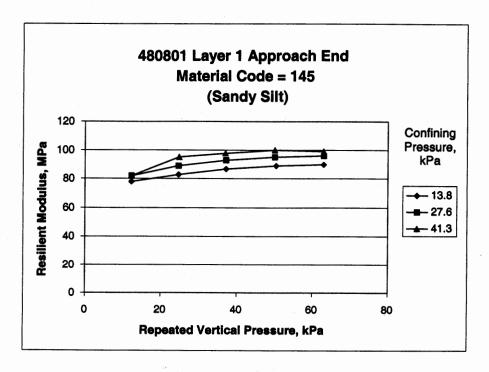


Figure 55. Sample from test section 480801, layer 1, at the approach end shows that resilient modulus is independent of confining pressure at the lowest vertical stress.

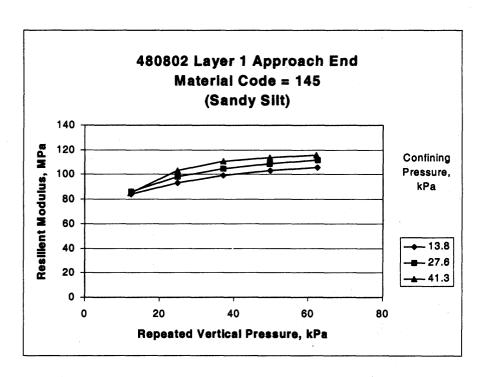


Figure 56. Sample from test section 480802, layer 1, at the approach end shows that resilient modulus is independent of confining pressure at the lowest vertical stress.

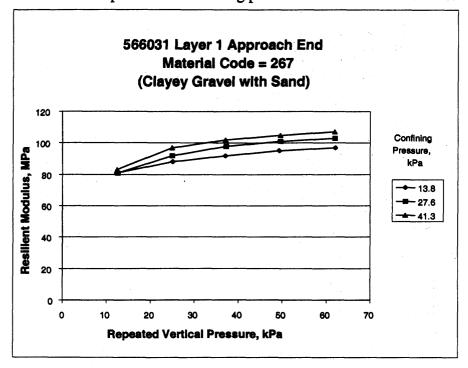


Figure 57. Sample from test section 566031, layer 1, at the approach end shows that resilient modulus is independent of confining pressure at the lowest vertical stress.

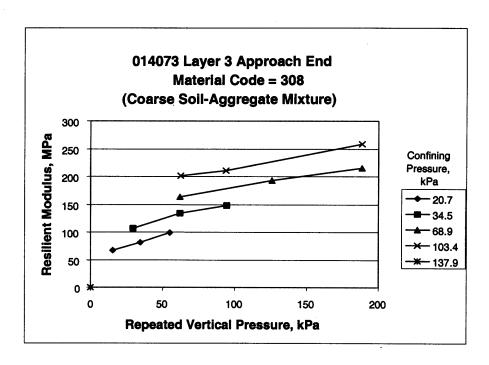


Figure 58. Sample from test section 014073, layer 3, at the approach end shows possible data entry error.

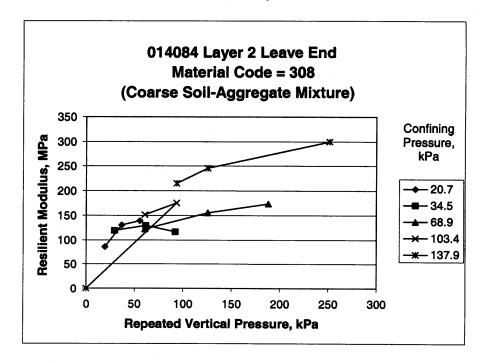


Figure 59. Sample from test section 014084, layer 2, at the leave end shows possible data entry error.

Figure 60. Sample from test section 124106, layer 2, at the approach end shows possible data entry error.

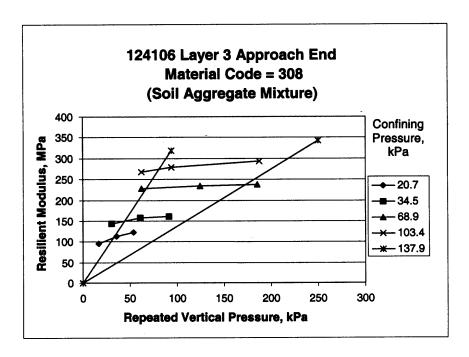


Figure 61. Sample from test section 124106, layer 3, at the approach end shows possible data entry error.

APPENDIX C.

SUMMARY OF THE FLAGGED RESILIENT MODULUS TESTS BY ANOMALY TYPE

Appendix C, tables 17 through 23, provides listings of all the resilient modulus tests that were flagged with the potential anomalies graphically presented in appendix B.

Table 17. Resilient modulus tests showing characteristics of exhibiting test specimen distortion or excessive softening.

State Code	SHRP ID	Layer No.	Test No.	Loc. No.	Sample No.	R- Squared	S _E /S _Y	Matl Code	No. of Cycles	Correlatio	ns with <i>M_R</i>	Flag	Comment
										θ	T _{oct}		
1	0102	1	2	B7	BS07	0.9990	0.5558	131	15	0.6274	-0.1670	1	Failure
1	0111	1	2	В3	BS03	0.9988	0.6470	131	15	0.7076	0.0259	1	Failure
1	4073	1	1	BA*	BS**	0.9968	0.8106	215	15	0.5578	0.0058	1	Failure
1	4155	1	1	BA*	BS**	0.9799	0.5513	214	15	0.8244	0.1524	1	Lowest confining pressure curve behaves (concaves up) totally different from the other two (concave down).
6	6044	1	1	BA*	BS**	0.9990	0.5689	145	15	0.8265	0.5620	1	Failure
6	7455	1	1	BA1	BS01	0.9991	0.5840	117	15	0.8015	0.5104	1	Failure
10	0103	1	1	В3	BS03	0.9991	0.6256	202	15	0.7127	-0.0037	1	Failure, first point of highest and mid confinement coincide.
30	8129	1	1	BA*	BS**	0.9991	0.5361	117	15	0.8556	0.6380	1	Failure at confining pressure of 41.4 kPa.
37	0212	1	1	B 5	BS05	0.9989	0.6214	145	15	0.7859	0.4244	1	Failure
42	1606	1	1	BA2	BS02	0.9951	0.9337	117	15	0.3327	0.0507	1	Failure with interweaving pattern.
42	1618	1	1	BA*	BS**	0.9710	0.9836	120	15	0.2168	0.6799	1	Failure with interweaving pattern. Possible seating problem at initial stages for 41.4-kPa and 27.6-kPa confining pressure.
51	1464	1	1	BA*	BS**	0.9846	0.9502	135	15	0.2958	0.5469	1	Failure, first point on the 41.4-kPa curve lies below the other two curves. This could be due to a seating problem with the sample at 41.4 kPa.
81	2812	1	2	A2	TS01	0.9984	0.7180	108	15	0.7314	0.1891	1	Failure

^{* -} Reference to LTPP Database Code List
** - Reference to LTPP Database Code List

Table 18. Resilient modulus tests showing significant effect of confining pressure.

Flag Comment			All seem to merge at end.	All merged at end.			Highest confining pressure curve/shape is a mirror image of the other two confining pressures.	Highest confining pressure shows failure, big gap between it and the other two curves.	Failure at highest confining pressure (41.4 kPa).	Points on 27.6 kPa and 41.4 kPa seem to merge at the end.		All merged at end.	Highest and mid confining pressure merged at end.	Weaving of 13.8-kPa and 27.6-kPa confining pressure curves.	Highest confining pressure concave down and all others concave up.	Big gap between highest confining pressure (concave down) and the other two (concave up).	First and last points of curves 13.8 kPa and 27.6 kPa coincide.
<u> </u>			2	2	2	7	2	2	2	2	2	2	2	2	2	2	2
Correlations with MR		Loct	-0.5564	-0.6986	0.1058	-0.2747	0.0651	-0.0835	0.2330	0.9024	-0.4435	-0.1406	-0.7283	0.1683	0.4455	-0.0547	-0.3790
Correlation		θ	0.3379	-0.0863	0.7481	0.5770	0.7976	0.7436	0.8494	0.6310	0.4942	0.0196	0.0386	0.7413	0.8462	0.7649	0.4744
No. of	Cycles		15	14	15	15	14	15	15	14	15	14	15	15	15	15	15
Matl	Code		102	108	216	217	217	102	214	145	217	265	108	107	808	214	216
S _E /S _Y	-		0.3804	0.5676	0.5508	0.3648	0.5051	0.4484	0.4476	0.7765	0.2934	0.9800	0.4303	0.5817	0.4795	0.5077	0.5328
ď.	Squared		0.9872	0.9787	0.9807	0.9792	0.9814	0.9807	0.9867	9056.0	0.9942	0.9828	0.9876	0.9855	0686.0	0.9941	0.9928
Sample	O		BS**	BS**	BS**	BS**	BS**	TS03	BS**	BS**	BS**	BS55	TS02	TS01	BG56	BS**	BS**
9	<u>9</u>		Ţ.	BA*	BA*	BA*	TP*	A 2	BA⁴	BA*	BA*	TP	A1	A1	TP1	BA*	BA⁺
Test	o Ž		2	-	-	-	2	2	-	-	-	2	-	_	2	-	-
Layer	<u>o</u>		-	-	_		-	-	-	-	-	-	-	-	2	-	-
SHRP	<u>_</u>		1003	9327	3003	5528	4082	9030	5403	5413	2909	1011	3013	1047	1056	3559	5284
State	Code		17	17	18	18	27	28	53	29	53	36	33	48	48	48	48

*- Reference to LTPP Database Code List
**- Reference to LTPP Database Code List

Table 19. Resilient modulus tests with a sudden drop and then an increase in resilient modulus.

State Code	SHRP	Layer No.	Test No.	Loc. No.	Sample No.	R-Squared	S _E /S _Y	Mati Code	No. of Cycles	Correlatio	ns with <i>M_R</i>	Flag	Comment
										θ	Toct	1	· ·
1	4129	1	2	TP1	BS55	0.9951	0.7299	215	15	0.2770	-0.4128	3	Leak in membrane suspected for highest confining pressure.
12	3811	1	2	A2	TS03	0.9964	0.5001	216	15	0.7180	-0.0632	3	Highest confining pressure went down and up, the other two not very stress-sensitive.
28	0508	1	2	A9	TS03	0.9983	0.5757	102	15	0.8119	0.1305	3	2nd point of highest confining pressure plot below mid confining pressure.
28	3089	1	2	A2	TS03	0.9950	0.5721	114	15	0.7298	-0.1215	3	Mid confining pressure very close to lowest confining pressure; 3rd point actually went below.
45	1024	1	1	A1	TS01	0.9966	0.3753	217	15	0.4722	-0.4943	3	There is a sudden dip in the data at 41.4-kPa confining pressure after which the curve becomes normal; also there might be some initial seating problem at a confining pressure of 41.4 kPa.
48	1056	1	1	A1	TS02	0.9990	0.6303	108	15	0.3895	-0.4717	3	Curve 41.4 kPa dips suddenly and also has an initial seating problem.
48	1056	2	2	TP1	BG55	0.9863	0.4299	308	15	0.8215	0.6161	3	Curve 137.9 kPa suddenly dips, probably due to membrane rupture.
48	1061	1	2	A2	TS04	0.9981	0.5205	108	15	0.4530	-0.4930	3	1st two points of highest confining pressure coincide with the mid confining pressure.
48	1069	1	2	A2	TS03	0.9983	0.6191	103	15	0.7259	0.0983	3	Highest confining pressure very close to mid confining pressure; 2nd point actually went below.
48	3875	1	2	A2	TS04	0.9981	0.5205	108	15	0.4530	-0.4930	3	Highest confining pressure has a sudden dip in the middle; probably due to defective sample (air voids?).

^{* -} Reference to LTPP Database Code List
** - Reference to LTPP Database Code List

Table 20. Resilient modulus tests exhibiting localized softening or disturbance of the specimen during the test or LVDT movement.

Comment			Highest confining pressure test plot below other two tests at beginning, possible problem with seating of specimen; all show failure at end.	Higher confining pressure test plot below lower confining pressure test at beginning, possible problem with seating of specimen.	Lowest and highest confining pressure show failure, mid confining pressure not sensitive to stress.	Highest confining pressure test plot below mid confining pressure test at beginning, possible problem with seating of specimen.	First point of highest confining pressure plot below lowest confining pressure, seating problem suspected for specimen.	Highest confining pressure test plot below other two tests at beginning, possible problem with seating of specimen.	Failure at highest confining pressure.	1st point of highest confining pressure plot below lowest confining pressure test.	Highest confining pressure test went wild!	Highest confining pressure test went wild!	Each confining test weaves in and out with the others.	Mid confining pressure behaves (concaves down) totally different from the other two (concave up).	Three confining pressures close to each other.
Flag			4	4	4	4	4	4	4	4	4	4	4	4	4
s with M _R		Loci	0.8360	0.9081	-0.1511	-0.4975	0.7586	0.9538	-0.4237	0.1170	-0.4630	-0.3471	0.4326	0.5935	-0.7920
Correlations with M _R		θ	0.4830	0.3334	0.7123	0.4255	0.7576	0.5015	0.4038	0.4530	0.2842	-0.1699	0.7201	0.7947	-0.2180
No. of Cycles			15	15	15	15	15	15	15	15	15	15	12	15	15
Matt			216	215	216	214	267	267	133	102	265	265	217	58 5	216
SE/S _Y			0.8727	0.9473	0.5145	0.5137	0.6582	0.8660	0.6716	0.8997	0.7465	0.9319	0.7366	0.6178	0.5139
R- Squared			0.9750	0.9618	0.9991	0.9951	0.9981	0.9945	0.9972	0.9977	0.9945	0.9841	0.9964	0.9958	0.9876
Sample No.			BS**	TS03	1301	T S 01	BS92	BS**	TS03	TS03	BS**	TS01	BS**	BS**	BS93
S. S.	-		BA*	¥5	FA .	F4	TP1	BA*	8	8	BA:	¥	BA*	BA*	TP1
Test No.			~	2	-	-	8	-	2	2	-	-	-	2	2
Layer No.			-	-	-	-	-	-	1	-	-	-	-	-	-
SHRP			3028	4073	4084	4126	1015	1017	3011	3048	3073	4021	5803	5805	7783
State Code			01	10	2	5	2	\$	92	90	92	82	92	ક્ટ	80

*- Reference to LTPP Database Code List **- Reference to LTPP Database Code List

Table 20. Resilient modulus tests exhibiting localized softening or disturbance of the specimen during the test or LVDT movement (continued).

State Code	SHRP ID	Layer No.	Test No.	Loc. No.	Sample No.	R- Squared	S _E /S _Y	Mati Code	No. of Cycles	Correlatio	ns with M _R	Flag	Comment
										θ	τ _{oct}		
12	4000	1	1	A1	TS01	0.9723	0.9658	214	15	0.1921	0.4881	4	Leak in membrane for highest confining pressure, it almost coincides with the lowest confining pressure.
12	4059	1	2	BA*	BS**	0.9948	0.5249	202	15	0.8610	0.2460	4	Mid confining pressure behaves differently from the other two, possible rupture of membrane in the middle of the test.
12	4102	1	1	A1	TS02	0.9713	0.7394	204	15	0.6884	0.8606	4	Beginning of highest confining pressure plot below the other two, Seating problem?
12	4103	1	1	BA*	BS**	0.8766	0.8768	214	15	0.4853	0.9543	4	Each confining test weaves in and out with the others.
15	1003	1	1	BA*	BS**	0.9964	0.5461	145	15	0.8346	0.8442	4	1st point of highest confining pressure plot below mid confining pressure test.
16	6027	1	2	TP1	BS93	0.9937	0.7566	255	15	0.6592	0.9273	4	1st point of all confining pressures are out of order, possible problem with seating of sample.
17	5854	1	1	BA*	BS**	0.9856	0.6732	108	15	-0.2648	-0.6812	4	All merged at end.
21	6040	1	1	BA*	BS**	0.9957	0.7271	108	15	0.6858	0.9062	4	1st half of highest confining pressure plot below mid confining pressure.
22	0118	1	2	B4	BS04	0.9978	0.5966	101	15	0.7986	0.8203	4	1st point of highest confining pressure plot below mid confining pressure test.
28	1016	1	1	A1	TS01	0.9887	0.3869	214	15	0.8582	0.1640	4	1st point of highest confining pressure plot below mid confining pressure, big gap between the lowest and the other two curves.
28	3018	1	2	A2	TS03	0.9959	0.5013	214	15	0.1695	-0.6590	4	Highest confining pressure below mid confining pressure except last point.
28	3081	1	1	A1	TS01	0.9931	0.7821	216	15	0.1502	-0.4899	4	Highest confining pressure crossing the other two curves.
28	3090	1	1	A1	TS01	0.9885	0.6523	143	15	0.2925	-0.5250	4	1st point of highest confining pressure plot below lowest confining pressure test.
28	3097	1	1	A1	TS01	0.9693	1.0000	141	15	-0.2393	-0.0113	4	Highest confining pressure crossing the other two curves.
28	3099	1	1	A1	TS01	0.9960	0.8400	103	15	0.4192	-0.1249	4	Highest confining pressure crossing the other two curves.

Table 20. Resilient modulus tests exhibiting localized softening or disturbance of the specimen during the test or LVDT movement (continued).

State Code	SHRP ID	Layer No.	Test No.	Loc. No.	Sample No.	R-Squared	S _E /S _Y	Matl Code	No. of Cycles	Correlatio	ns with <i>M_R</i>	Flag	Comment
										θ	τ _{oct}	1	
34	1033	1	2	TP	BS55	0.9965	0.5103	267	15	0.5167	-0.4152	4	1st point of highest confining pressure plot below mid confining pressure test.
35	1022	1	1	A1	TS01	0.9943	0.4376	204	15	0.4313	-0.4923	4	1st point of highest confining pressure plot below mid confining pressure test.
35	2118	1	1	A1	TS01	0.9944	0.8583	214	15	0.4930	0.7739	4	Data points at different confining pressures form a weaving pattern.
35	3010	1	1	A1	TS01	0.9907	0.5846	202	15	0.8301	0.6993	4	1st point of highest confining pressure plots below mid & lowest confining pressure test
37	1024	1	2	TP	BS55	0.9874	0.5150	214	14	0.0140	-0.7077	4	Data points of confining pressures 13.8 kPa and 27.6 kPa form a weaving pattern.
37	1352	1	2	TP	BS55	0.9927	1.0000	141	15	0.0570	0.0980	4	Data points at different confining pressures form a weaving pattern.
37	1803	1	2	TP	BS55	0.9960	0.5124	144	15	0.4728	-0.4673	4	1st point of highest confining pressure plot below mid confining pressure test.
37	1992	1	1	BA*	BS**	0.9981	0.5061	215	15	0.5541	-0.3762	4	Data points of confining pressures 41.4 kPa and 27.6 kPa form a weaving pattern.
37	2825	1	2	TP	BS55	0.9964	0.8159	204	15	0.5545	-0.0093	4	Data points of confining pressures 41.4 kPa and 27.6 kPa form a weaving pattern.
37	3011	1	1	BA*	BS**	0.9962	0.6789	216	15	0.6536	-0.0090	4	Data points of confining pressures 41.4 kPa and 27.6 kPa form a weaving pattern.
37	5037	1	1	BA*	BS**	0.9865	0.6047	215	15	0.2836	-0.5465	4	1st point of highest confining pressure plot below mid confining pressure test.
40	0116	1	2	B2	BS02	0.9987	0.5134	113	15	0.8543	0.6704	4	1st point of highest confining pressure plot below mid confining pressure test.
40	4087	1	2	BA*	BS**	0.9319	0.9479	108	15	0.3259	0.9272	4	Weaving pattern seen.
40	4161	1	1	A1	TS01	0.9814	0.9226	214	15	0.4172	0.8217	4	Weaving pattern seen.
40	4161	1	2	A2	TS03	0.9833	0.8917	214	15	0.4912	0.1678	4	Weaving pattern seen and soil seems to be stress-insensitive.
40	4166	1	1	BA*	BS**	0.9917	0.8673	114	15	0.5024	0.8040	4	Data at confining pressure of 41.4 kPa weaves through the data at the other two confining pressures.
40	5021	1	2	A2	TS01	0.9848	0.9433	265	15	-0.3253	-0.3316	4	Data at confining pressure of 41.4 kPa weaves through the data at the other two confining pressures.

^{* -} Reference to LTPP Database Code List
** - Reference to LTPP Database Code List

Table 20. Resilient modulus tests exhibiting localized softening or disturbance of the specimen during the test or LVDT movement (continued).

State Code	SHRP ID	Layer No.	Test No.	Loc. No.	Sample No.	R-Squared	S _E /S _Y	Matl Code	No. of Cycles	Correlation	ns with <i>M_R</i>	Flag	Comment
					1					θ	τ _{oct}	1	
40	6010	1	2	BA*	BS**	0.9971	0.5426	217	15	0.7421	-0.0317	4	Data points at confining pressure of 41.4 kPa weave through the data points at a confining pressure of 27.6 kPa.
40	7024	1	2	A2	TS03	0.9897	0.7258	214	15	0.1761	-0.5484	4	First point of highest confining pressure plot below lowest confining pressure, seating problem suspected for specimen.
42	1597	1	2	TP	BS55	0.9797	0.8934	111	15	0.4510	0.8784	4	Curves 41.4 kPa and 27.6 kPa lower than the curve at 13.8 kPa during initial stages of the test. Could be a seating problem or leak in pressure during the initial stages of the test.
42	1598	1	2	BA6	BS06	0.9162	0.9553	217	15	0.3077	0.9222	4	Curves 41.4 kPa and 27.6 kPa lower than the curve at 13.8 kPa during initial stages of the test. Could be a seating problem or leak in pressure during the initial stages of the test.
42	1605	1	2	TP	BS55	0.9889	0.4388	267	14	-0.1774	-0.8089	4	First point on the 41.4-kPa curve which is slightly below the first point on the 27.6 kPa curve. Initial seating problem for 41.4 kPa?
42	1690	1	1	BA*	BS**	0.9944	0.6388	146	15	0.8085	0.3473	4	Weaving pattern, with seating problem for a pressure of 27.6 kPa. Also the soil seems to stress-insensitive.
42	7037	1	2	BA*	BS**	0.9977	0.5600	267	15	0.5678	-0.3326	4	Weaving pattern, with seating problem for a pressure of 41.1. Also, the soil seems stress-insensitive.
42	9027	1	2	BA*	BS**	0.9980	0.6105	267	15	0.5527	-0.3264	4	Weaving pattern, with seating problem for a pressure of 27.6 kPa. Also, the soil seems stress-insensitive.
45	1008	1	2	A2	TS03	0.9829	0.8335	214	15	0.5816	0.6383	4	Weaving pattern, with seating problem for a pressure of 41.4 kPa. Also, the soil seems stress-insensitive during the latter part of the test.
45	1011	2	1	BA*	BG**	0.9862	0.3155	308	15	0.9521	0.8993	4	Weaving pattern. The first point at every pressure is below the curve at an immediately lower pressure. Probably seating problems at the initial stages of the test.
47	1029	1	2	TP1	BS55	0.9953	0.6113	217	15	0.3157	-0.5409	4	Seating problem with 41.4 kPa.
47	2008	1	2	A2	TS03	0.9924	0.7033	131	15	0.1024	-0.6179	4	Seating problem with 41.4 kPa.

^{* -} Reference to LTPP Database Code List
** - Reference to LTPP Database Code List

Table 20. Resilient modulus tests exhibiting localized softening or disturbance of the specimen during the test or LVDT movement (continued).

State Code	SHRP ID	Layer No.	Test No.	Loc. No.	Sample No.	R-Squared	S _E /S _Y	Matl Code	No. of Cycles	Correlatio	ns with <i>M_R</i>	Flag	Comment
									1 1	θ	τ _{oct}	1	
47	3101	1	1	A1	TS01	0.9803	0.9283	109	15	0.3780	0.5898	4	Weaving pattern with the 41.4-kPa curve lower than that of 27.6 kPa. Probable initial seating problems and also a leak in pressure at 41.4 kPa.
47	6022	1	1	A1	TS01	0.9959	0.4761	114	15	0.4705	-0.4557	4	Curves at pressure 41.4 kPa and 27.6 kPa weave through each other. Leak in pressure at level 41.4 kPa?
48	0801	1	3	A5	TS09	0.9983	0.6001	145	15	0.7146	-0.0544	4	Failure with seating problem at 41.4 kPa?
48	1046	2	1	BA*	BG**	0.9832	0.3962	309	13	0.9336	0.8257	4	Seating problem with 34.5 and 68.9 kPa?
48	1069	1	1	BA*	BS**	0.9993	0.7093	103	15	0.7223	0.3748	4	1st point of highest and lowest confining pressure coincide.
48	1092	1	1	BA*	BS**	0.9909	1.0000	143	15	-0.1710	0.1423	4	All three curves cross each other.
48	1094	1	2	TP1	BS55	0.9929	0.5702	217	15	0.8159	0.7139	4	Mid confining pressure crosses the other two curves.
48	1111	1	2	A2	TS03	0.9837	0.9019	216	15	0.4419	0.8732	4	All three curves cross each other.
48	1111	1	1	A1	TS01	0.9910	0.9958	216	15	0.0569	-0.0743	4	Highest confining pressure crosses the other two curves.
48	1113	1	2	A2	TS03	0.9513	0.9895	114	15	0.1790	0.7852	4	All three curves cross each other.
48	1116	1	1	A1	TS01	0.9957	0.9128	114	15	0.4004	0.2941	4	All three curves cross each other.
48	1130	1	2	A2	TS03	0.9798	0.9423	109	15	0.3352	0.9155	4	Highest confining pressure below mid confining pressure and crosses the lowest confining pressure curve.
48	1181	1	2	BA*	BS**	0.9829	0.7838	114	15	0.6034	0.7567	4	Mid confining pressure crosses the other two curves.
48	1183	1	2	A2	TS03	0.9940	0.8556	114	15	0.3563	-0.1881	4	Highest confining pressure below mid confining pressure and crosses the lowest confining pressure curve.
48	3003	1	1	A1	TS01	0.9959	0.9410	103	15	0.4018	0.5168	4	All three curves cross each other.
48	3010	1	2	BA*	BS**	0.9988	0.7834	102	15	-0.0756	-0.5581	4	All three curves are very close and cross each other.
48	3579	1	1	A1	TS01	0.9985	0.5796	114	15	0.7667	0.2049	4	Highest confining pressure crosses mid confining pressure.
48	3589	1	2	A2	TS03	0.9927	0.7455	214	15	0.6881	0.6033	4	Highest confining pressure crosses the other two curves.

^{• -} Reference to LTPP Database Code List
** - Reference to LTPP Database Code List

Table 20. Resilient modulus tests exhibiting localized softening or disturbance of the specimen during the test or LVDT movement (continued).

State Code	SHRP ID	Layer No.	Test No.	Loc. No.	Sample No.	R-Squared	S _E /S _Y	Matl Code	No. of Cycles	Correlatio	ns with <i>M_R</i>	Flag	Comment
									l t	θ	τ _{oct}	1	
48	3609	1	1	A1	TS01	0.9981	0.5103	101	15	0.1417	-0.6404	4	Highest confining pressure crosses the other two curves.
48	3609	1	2	A2	TS03	0.9797	0.8954	101	15	0.4350	0.8887	4	All three curves are very close and cross each other.
48	3689	1	2	A2	TS03	0.9766	0.8534	113	15	0.5666	0.7254	4	Lowest confining pressure crosses the other two curves and data entry error for mid confining pressure.
48	3729	1	1	A1	TS01	0.9941	0.6437	102	15	0.6323	-0.1869	4	Highest confining pressure (concave down crossed the other two (concave up).
48	3749	1	1	A1	TS02	0.9973	0.8904	216	15	0.4979	0.5238	4	All three curves cross each other.
48	3749	1	2	A2	TS03	0.9890	1.0000	216	15	-0.0034	0.1366	4	Highest confining pressure (concave down) crossed the other two (concave up).
48	3769	1	1	BA*	BS**	0.9975	0.6711	215	15	0.6232	-0.1880	4	Highest confining pressure (concave down crossed the other two (concave up).
48	3779	1	1	A1	TS01	0.9931	0.5885	109	15	-0.1265	-0.7517	4	Lowest confining pressure crosses mid confining pressure.
48	4142	1	1	A1	TS01	0.9943	0.7639	216	15	0.6560	0.5129	4	First point of highest confining pressure plot below lowest confining pressure, seating problem suspected for specimen.
48	5026	1	1	A1	TS01	0.9959	1.0000	103	15	-0.1073	0.3915	4	All three curves cross each other.
48	5154	1	1	A1	TS02	0.9800	1.0000	216	15	-0.3015	0.2044	4	Leak in pressure for the highest confining pressure, hence it crosses the other two curves.
48	5278	1	1	BA*	BS**	0.9963	0.6317	217	15	0.6168	-0.0005	4	Leak in pressure for 41.4-kPa sample, hence it falls below the 27.6-kPa curve. Could be due to rupture in membrane.
48	5310	1	2	BA*	BS**	0.9888	0.6436	214	15	0.7688	0.8089	4	First point of 27.6 kPa falls below that of 13.8 kPa. This could be due to a seating problem for the sample at 27.6 kPa.
48	5323	1	2	A2	TS03	0.9688	0.9522	108	15	0.3180	0.8322	4	Curves 27.6 kPa and 41.4 kPa fall below curve 13.8 kPa for the first half of the test and during the second half, curve 41.4 kPa is below curve 27.6 kPa. This could be due to seating problems or leak in pressure.

^{* -} Reference to LTPP Database Code List

^{** -} Reference to LTPP Database Code List

Table 20. Resilient modulus tests exhibiting localized softening or disturbance of the specimen during the test or LVDT movement (continued).

State Code	SHRP	Layer No.	Test No.	Loc. No.	Sample No.	R-Squared	S _E /S _Y	Mati Code	No. of Cycles	Correlation	ns with <i>M_R</i>	Flag	Comment
									1 1	θ	τ _{oct}	1	
48	5334	1	2	A2	TS03	0.9940	0.5232	114	15	0.2214	-0.6071	4	First point of 27.6 kPa falls below that of 13.8 kPa. This could be due to a seating problem for the sample at 27.6 kPa. Also, the last points on the 13.8-kPa and 27.6-kPa curves coincide.
48	5335	1	2	BA*	BS**	0.9733	0.9192	108	15	0.3890	0.7325	4	Curves 27.6 kPa and 41.4 kPa fall below curve 13.8 kPa for the first half of the test and during the second half, curve 41.4 kPa is below curve 27.6 kPa. This could be due to seating problems or leak in pressure.
48	5336	1	2	A2	TS03	0.9708	0.9971	108	15	0.1334	0.4812	4	All three curves cross each other. The material is also stress-insensitive.
48	6179	1	1	A1	TS01	0.9913	0.7866	216	15	0.3214	-0.3123	4	Curve 27.6 kPa falls below curve 13.8 kPa during the latter part of the test. This could be due to membrane rupture or leak in pressure.
48	9005	1	2	A2	TS02	0.9968	0.8181	118	15	0.6201	0.6909	4	Seating problems with samples at 27.6 kPa and 41.4 kPa.
49	1008	1	2	TP1	BS92	0.9892	0.9980	114	15	0.1121	0.0801	4	Curves 27.6 kPa and 13.8 kPa seem to be almost the same. All the curves cross each other.
51	5009	1	2	BA*	BS**	0.9981	0.5779	267	15	0.8143	0.7293	4	Highest confining pressure crosses mid confining pressure.
54	1640	1	2	TP	BS55	0.9827	0.4723	267	15	-0.2536	-0.8097	4	First point on curve 41.4 kPa lies below the other two curves. This is probably due to a seating problem. The last points on the middle and high confining pressures coincide with each other.
54	4003	1	1	BA*	BS**	0.9968	0.5450	265	15	0.5032	-0.4247	4	First point on the highest confinement curve is below that on the mid confining pressure curve. Due to a seating problem? Soil is stress insensitive.
54	7008	1	2	BA*	BS**	0.9966	0.6189	108	15	0.5514	-0.3145	4	First point on the highest confinement curve is below that on the mid confining pressure curve. Due to a seating problem? Soil is stress insensitive.

^{* -} Reference to LTPP Database Code List
** - Reference to LTPP Database Code List

Table 20. Resilient modulus tests exhibiting localized softening or disturbance of the specimen during the test or LVDT movement (continued).

Flag Comment		First point on the highest confinement curve is below that on the mid confining pressure curve. Due to a seating problem	The 41.4-kPa curve falls below the 27 6-	KPa curve during the second half of the	First point on the highest confinement curve is below that on the mid & low	confining pressure curves. Due to a seating problem?	First point on the highest confinement	curve is below that on the mid & low confining pressure curves. Due to a seating
Flag		4	4		4		4	,
Correlations with M _R	Loci	-0.4178	0.0797	,	-0.7134		-0.7092	
Correlation	θ	0.5152	0.7028		0.0715		-0.4051	:
No. of Cycles		15	15		15		15	
Mati		108	267		102		131	
SE/Sy		0.5393	0.5956		0.5387		0.7164	
R-Squared		0.9968	0.9964		0.9975		0.9917	
Loc. Sample No.		BS**	BS**		BS**		BS**	
Į.		.	BA*		BA*		BA*	
Test No.		-	-		-		-	
Layer No.		-	٦		-		-	
SHRP		2008	4122		1620		2811	
State Code		8	72		87		87	

* - Reference to LTPP Database Code List ** - Reference to LTPP Database Code List

Table 21. Resilient modulus tests that result in lower resilient moduli for the higher confining pressures.

State Code	SHRP ID	Layer No.	Test No.	Loc. No.	Sample No.	R- Squared	S _E /S _Y	Matl Code	No. of Cycles	Correlatio	ns with M _R	Flag	Comment
										θ	Toct	1	
1	4125	1	1	BA*	BS**	0.9944	0.8035	217	15	0.5165	0.0141	5	Leak in membrane suspected for highest confining pressure, not sensitive to stress for the other two.
1	4127	2	2	BA*	BG**	0.9845	0.3184	308	15	0.9579	0.9118	5	Leak in membrane suspected for 34.5- kPa and 68.9-kPa confining pressure.
12	3995	3	1	BA*	BG**	0.9800	0.3448	308	15	0.9551	0.8834	5	20.7-kPa confining pressure above 34.5-kPa confining pressure and behaves differently from all confining pressures.
28	1016	1	2	A2	TS03	0.9887	0.5853	214	15	0.4356	-0.4020	5	Highest confining pressure below mid confining pressure.
28	4024	1	1	BA*	BS**	0.9904	0.8564	108	15	0.5351	0.7370	5	Highest confining pressure below mid confining pressure, 2nd point of all three curves coincide.
40	3018	1	2	A2	TS03	0.9928	0.5490	102	15	-0.5167	-0.7962	5	Out of order and some weaving seen.
47	3108	1	2	TP1	BS55	0.9899	0.4136	114	15	-0.6332	-0.8891	5	Curve at pressure of 41.4 kPa is lower than the curve at 13.8 kPa.
47	3109	1	2	TP1	BS55	0.9880	0.6362	114	15	-0.6952	-0.7730	5	Curve at pressure of 41.4 kPa is lower than the curve at 13.8 kPa. Also the last points of all curves merge at one single point.
48	0802	3	2	B4	BG01	0.9924	1.0000	302	15	-0.4163	0.0445	5	Curve at pressure 41.4 kPa is lower than the curves at 13.8 kPa and 27.6 kPa. The soil is stress-insensitive.
48	1047	1	2	A2	TS03	0.9975	0.6008	107	15	-0.1202	-0.7463	5	Curve 41.4 kPa below curve 26.7 kPa
48	9005	1	1	A1	TS01	0.9939	0.9218	118	15	-0.6583	-0.3640	5	Curve 41.4 kPa is below the curves at 13.8 kPa and 27.6 kPa. Also, the curves at 13.8 kPa and 27.6 kPa cross each other, which may be due to seating problems with the sample at 27.6 kPa.

^{* -} Reference to LTPP Database Code List
** - Reference to LTPP Database Code List

Table 22. Resilient modulus tests showing resilient modulus is independent of confining pressure at the lowest vertical stress.

State Code	SHRP ID	Layer No.	Test No.	Loc. No.	Sample No.	R- Squared	S _E /S _Y	Mati Code	No. of Cycles	Correlatio	ns with <i>M_R</i>	Flag	Comment
								1	1	θ	$ au_{ m oct}$		
6	1253	1	1	BA*	BS**	0.9972	0.6037	267	15	0.8209	0.7423	6	1st points of all confining pressures are about the same.
9	5001	1	1	BA2	BS02	0.9767	0.5652	215	15	0.8353	0.7068	6	1st points of all confining pressures are about the same.
12	3811	1	1	BA*	BS**	0.9937	0.6869	216	15	0.7299	0.7225	6	1st points of all confining pressures are about the same.
22	0113	1	1	B6	BS06	0.9966	0.6632	101	15	0.7409	0.8622	6	1st points of highest confining pressure plot coincide with mid confining pressure test.
22	0117	1	2	B5	BS05	0.9991	0.5231	101	15	0.8566	0.5662	6	1st points of highest confining pressure plot coincide with mid confining pressure test.
22	0124	1	1	В3	BS03	0.9988	0.6005	101	15	0.7928	0.8236	6	1st points of highest confining pressure plot coincide with mid confining pressure test.
35	0101	1	2	B1	BS01	0.9958	0.7379	114	15	0.6699	0.8883	6	1st points of highest confining pressure plot below mid & lowest confining pressure test.
35	0105	1	2	В3	BS03	0.9965	0.7091	103	15	0.7000	0.8837	6	1st points of highest confining pressure plot below mid confining pressure test (the first points at all confining pressures. Start at almost the same point).
40	0117	1	2	В3	BS03	0.9964	0.6047	113	15	0.7927	0.8499	6	1st points of highest and mid confining pressure test coincide.
40	0120	1	2	B5	BS05	0.9971	0.5888	113	15	0.8066	0.7704	6	1st points of highest and mid confining pressure test coincide.
40	0123	1	2	B6	BS06	0.9926	0.7377	113	15	0.6792	0.9140	6	The first points at all confining pressure start at almost the same point.
48	0801	1	1	B2	BS02	0.9985	0.5336	145	15	0.8479	0.7235	6	First and the last points of confining pressures 27.6 kPa and 41.3 kPa coincide.
48	0802	1	1	B1	BS01	0.9951	0.7011	145	15	0.7176	0.8737	6	Initial point is the same for all three curves.

Table 22. Resilient modulus tests showing resilient modulus is independent of confining pressure at the lowest vertical stress (continued).

State Code	SHRP ID	Layer No.	Test No.	Loc. No.	Sample No.	R- Squared	S _E /S _Y	Matl Code	No. of Cycles	Correlations with M _R		Flag	Comment
1										θ	τ _{oct}		
48	2133	1	1	A1	TS01	0.9984	0.5330	103	15	0.7112	-0.1237	6	1st points of highest and mid confining pressure coincide.
49	1006	1	2	TP1	BS92	0.9978	0.5413	267	15	0.8344	0.6160	6	Initial points on curves 13.8 kPa and 27.6 kPa coincide. Also, the second point on the 41.4-kPa curve looks like a data entry error.
56	6031	1	1	BA*	BS**	0.9967	0.6675	267	15	0.7533	0.8494	6	First point on all three curves coincide.
56	6031	1	1	BA*	BS**	0.9967	0.6675	267	15	0.7533	0.8494	6	First point on all three curves coincide.
56	6031	1	2	TP1	BS91	0.9984	0.5475	267	15	0.8397	0.7415	6	First points on the mid and high confining pressures coincide.
56	7772	1	2	TP1	BS91	0.9991	0.5443	267	15	0.6069	-0.2731	6	First points on the mid and high confining pressures coincide. First point on the low curve does not exactly coincide with the other two, but is very close.
72	4122	1	2	BA*	BS**	0.9872	0.7199	267	15	0.6964	0.8196	6	First point on all three curves coincide.
81	1805	1	1	BA*	BS**	0.9993	0.4547	137	15	0.4926	-0.4517	6	First points on the mid and high confining pressures coincide. Failure?

^{* -} Reference to LTPP Database Code List
** - Reference to LTPP Database Code List

128

Table 23. Resilient modulus tests with potential data entry error.

State Code	SHRP ID	Layer No.	Test No.	Loc. No.	Sample No.	R- Squared	S _E /S _Y	Matl Code	No. of Cycles	Correlations with M _R		Flag	Comment
										θ	Toct		
1	4073	3	1	BA*	BG**	0.7186	0.9743	308	15	0.2039	0.8829	7	Both <i>Mr</i> and stress at zero for highest confining pressure, data entry error?! But it's at Level E!!??
1	4084	2	2	BA*	BG**	0.9121	0.7272	308	15	0.7395	0.8240	7	Leak in membrane suspected for 34.5-kPa and 68.9-kPa confining pressure, zero data point for 103.4-kPa confining pressure.
12	3997	3	1	BA*	BG**	0.9313	0.6430	308	15	0.7856	0.7503	7	Zero data point for 103.4-kPa confining pressure.
12	4106	3	1	BA*	BG**	0.9070	0.7260	308	15	0.6918	0.7711	7	Zero data point for 137.9-kPa confining pressure.
12	4106	2	1	BA*	BG**	0.9310	0.5385	309	15	0.8489	0.9126	7	Zero data point for 103.4-kPa confining pressure.
28	3090	3	2	BA*	BG**	0.9075	0.6885	308	15	0.7319	0.8265	7	Zero point for highest confining pressure.
47	3104	2	1	BA*	BG**	0.9052	0.6603	303	15	0.7507	0.8214	7	Zero point for a pressure of 137.9 kPa.
48	3865	1	1	BA*	BS**	0.9695	0.6396	114	15	0.7238	0.5862	7	Zero point for lowest confining pressure.
48	9167	3	2	BA4	BG04	0.9032	0.6839	308	15	0.7396	0.9023	7	Initial zero point for curve 137.9 kPa.

^{* -} Reference to LTPP Database Code List
** - Reference to LTPP Database Code List

APPENDIX D.

PARAMETERS AND THEIR VALUES INCLUDED IN THE NONLINEAR REGRESSION RELATING RESILIENT MODULUS TO PHYSICAL PROPERTIES

Appendix D, tables 24 through 39, provides a summary of the minimum, maximum, mean, and median values for each parameter included in the nonlinear optimization regression study to determine the relationship and effect between resilient modulus and physical properties. Tables 24 through 31 include the data sets for the base and subbase materials, while tables 31 through 36 include the data sets for the subgrade soils. The following defines the parameters used in these tables.

 $P_{3/8}$ — Percent passing the 3/8-in [9.5-mm] sieve.

P_{No. 40} — Percent passing the No. 4 sieve.
P_{No. 40} — Percent passing the No. 40 sieve.
P_{No. 200} — Percent passing the No. 200 sieve.

LL - Liquid limit.
PI - Plasticity index.

 W_{opt} — Optimum water content of material. $\delta_{d,opt}$ — Maximum dry unit weight of material.

 W_s — Water content of test specimen. δ_s — Dry unit weight of test specimen.

%Silt — Percent by weight of silt in the material.%Clay — Percent by weight of clay in the material.

Table 24. Summary of the LTPP data used in the nonlinear regression study of resilient modulus for all granular base and subbase material data set.

LTPP BASE MATL. CODE:

All Granular Base & Subbase Materials

No. of Resilient Modulus Tests: 423

Parameters	Min	Max	Median	Mean
P _{3/8"}	39.0	100.0	79.0	78.9
P _{No. 4}	21.0	100.0	65.0	67.6
P _{No. 40}	8.0	98.0	38.0	42.4
P _{No. 200}	1.7	96.1	14.1	17.5
LL	0.0	60.0	0.0	7.5
PI	0.0	37.0	0.0	1.9
W _{opt} %	4.0	19.0	8.0	8.2
γ _{d. opt} (kg/m ³)	1666.1	2467.1	2114.6	2097.0
w _s %	3.1	20.5	7.6	8.0
$\gamma_s (kg/m^3)$	1557.0	2391.6	2000.0	1978.8
Ys/Yd.opt	0.80	1.06	0.95	0.94
W _s /W _{opt}	0.36	1.46	0.98	0.98
(γ _{d.opt}) ² /P _{No. 40}	30172.0	665211.9	117421.0	140388.9

Table 25. Summary of the LTPP data used in the nonlinear regression study of resilient modulus for LTPP base and subbase material code 302 data set – uncrushed gravel.

LTPP BASE MATL. CODE:

302 - Uncrushed Gravel

No. of Resilient Modulus Tests:

31

Parameters	Min	Max	Median	Mean
P _{3/8} "	60.0	90.0	76.0	76.6
P _{No. 4}	32.0	81.0	59.0	61.2
P _{No. 40}	9.0	45.0	25.0	25.6
P _{No. 200}	3.5	18.1	6.9	8.5
LL	0.0	23.0	0.0	3.0
PI	0.0	8.0	0.0	0.7
W _{opt} %	5.0	10.0	6.0	6.7
γ _{d. opt} (kg/m³)	2018.5	2371.0	2194.7	2190.1
w _s %	3.7	13.8	6.0	6.4
γ _s (kg/m ³)	1882.1	2215.5	2057.0	2049.9
γ₅/γd.opt	0.89	1.00	0.94	0.94
W _s /W _{opt}	0.62	1.38	0.98	0.95
(γ _{d.opt}) ² /P _{No. 40}	93439.9	535209.3	193843.1	215727.5

Table 26. Summary of the LTPP data used in the nonlinear regression study of resilient modulus for LTPP base and subbase material code 303 data set – crushed stone.

LTPP BASE MATL. CODE:

303 - Crushed Stone

No. of Resilient Modulus Tests:

57

Parameters	Min	Max	Median	Mean
P _{3/8} .	39.0	90.0	64.0	63.5
P _{No. 4}	21.0	77.0	49.0	46.9
P _{No. 40}	8.0	47.0	25.0	25.6
P _{No. 200}	3.0	32.4	12.2	13.4
LL	0.0	27.0	0.0	6.1
PI	0.0	8.0	0.0	1.3
Woot%	4.0	11.0	6.0	6.4
γ _{d. opt} (kg/m³)	1874.3	2354.9	2242.8	2218.6
W _s %	3.1	12.9	6.3	6.6
γ _s (kg/m³)	1723.6	2236.2	2095.2	2082.3
Ŷs∕Ŷd.opt	0.80	1.00	0.94	0.94
W _s /W _{opt}	0.52	1.42	1.00	1.03
(γ _{d.opt}) ² /P _{No. 40}	74747.9	665211.9	198342.0	220732.2

Table 27. Summary of the LTPP data used in the nonlinear regression study of resilient modulus for LTPP base and subbase material code 304 data set – crushed gravel.

LTPP BASE MATL. CODE:

304 - Crushed Gravel

No. of Resilient Modulus Tests:

27

Parameters	Min	Max	Median	Mean
P _{3/8*}	49.0	98.0	69.0	69.5
P _{No. 4}	30.0	91.0	53.0	53.7
P _{No. 40}	8.0	69.0	28.0	28.2
P _{No. 200}	3.5	59.9	12.3	16.3
LL	0.0	33.0	0.0	9.7
PI	0.0	16.0	0.0	2.1
W _{opt} %	5.0	11.0	6.0	7.2
γ _{d. opt} (kg/m³)	1986.5	2419.0	2194.7	2195.3
w _s %	4.3	11.3	5.9	6.9
γ _s (kg/m ³)	1875.8	2285.8	2061.6	2072.8
γ _s /γ _{d.opt}	0.92	0.96	0.94	0.94
W _s /W _{opt}	0.69	1.30	0.95	0.96
(γ _{d.opt}) ² /P _{No. 40}	57189.9	584658.9	172031.6	210196.2

Table 28. Summary of the LTPP data used in the nonlinear regression study of resilient modulus for LTPP base and subbase material code 306 data set – sand.

LTPP BASE MATL. CODE:

306 - Sand

No. of Resilient Modulus Tests:

35

Parameters	Min	Max	Median	Mean
P _{3/8*}	80.0	100.0	98.0	94.6
P _{No. 4}	69.0	100.0	95.0	91.1
P _{No. 40}	28.0	97.0	59.0	60.9
P _{No. 200}	1.7	32.3	9.4	10.5
LL	0.0	26.0	0.0	2.0
Pl	0.0	4.0	0.0	0.1
W _{opt} %	5.0	16.0	10.0	9.5
γ _{d. opt} (kg/m ³)	1666.1	2226.8	1906.4	1943.0
w _s %	5.0	14.7	9.1	8.9
γ _s (kg/m³)	1574.6	2108.9	1797.3	1831.5
Ys/Yd.opt	0.90	0.97	0.95	0.94
W _s /W _{opt}	0.55	1.21	0.96	0.95
(γ _{d.opt}) ² /P _{No. 40}	30172.0	151323.7	64972.0	78238.9

Table 29. Summary of the LTPP data used in the nonlinear regression study of resilient modulus for LTPP base and subbase material code 307 data set – fine-grained soil-aggregate mixture.

LTPP BASE MATL. CODE:

307 - Fine-Grained Soil-Aggregate Mixture

No. of Resilient Modulus Tests:

Parameters	Min	Max	Median	Mean
P _{3/8*}	59.0	100.0	92.0	89.0
P _{No. 4}	47.0	99.0	85.5	83.0
P _{No. 40}	32.0	80.0	50.5	51.4
P _{No. 200}	7.2	64.8	32.5	29.3
LL	0.0	60.0	0.0	12.8
Pl	0.0	37.0	0.0	4.5
W _{opt} %	4.0	17.0	8.0	8.5
γ _{d. opt} (kg/m³)	1794.2	2226.8	2082.6	2065.3
w _s %	3.7	16.6	7.7	8.1
γ _s (kg/m³)	1726.4	2096.8	1968.7	1962.3
Ys/Yd.opt	0.92	0.97	0.96	0.95
W _s /W _{opt}	0.87	1.10	0.94	0.95
$(\gamma_{d.opt})^2/P_{No. 40}$	43914.4	139740.7	84267.3	× 87798.8

Table 30. Summary of the LTPP data used in the nonlinear regression study of resilient modulus for LTPP base and subbase material code 308 data set – coarse-grained soil-aggregate mixture.

LTPP BASE MATL. CODE:

308 - Coarse-Grained Soil-Aggregate Mixture

No. of Resilient Modulus Tests:

155

Parameters	Min	Max	Median	Mean
P _{3/8*}	45.0	100.0	75.0	75.3
P _{No. 4}	34.0	99.0	61.0	62.1
P _{No. 40}	13.0	90.0	36.0	37.3
P _{No. 200}	1.9	37.0	15.9	17.4
LL	0.0	44.0	0.0	10.4
PI	0.0	18.0	0.0	2.7
W _{opt} %	4.0	19.0	8.0	8.5
γ _{d. opt} (kg/m ³)	1682.1	2451.1	2114.6	2099.8
w _s %	3.5	20.5	7.9	8.5
γ _s (kg/m³)	1557.0	2332.0	2005.5	1985.3
Ys/Yd.opt	0.85	1.06	0.95	0.95
W _s /W _{opt}	0.36	1.46	0.99	1.01
(γ _{d.opt}) ² /P _{No. 40}	37058.9	412457.8	117658.0	141567.2

Table 31. Summary of the LTPP data used in the nonlinear regression study of resilient modulus for LTPP base and subbase material code 309 data set – fine-grained soil.

LTPP BASE MATL. CODE:

309 - Fine-Grained Soil

No. of Resilient Modulus Tests:

Parameters	Min	Max	Median	Mean
P _{3/8} *	58.0	100.0	94.5	92.3
P _{No. 4}	36.0	100.0	89.5	87.4
P _{No. 40}	20.0	98.0	66.0	67.2
P _{No. 200}	4.1	96.1	18.0	23.9
LL	0.0	30.0	0.0	5.4
PI	0.0	12.0	0.0	1.6
W _{opt} %	5.0	13.0	9.0	9.0
γ _{d. opt} (kg/m ³)	1746.2	2467.1	1986.5	2001.8
w _s %	4.7	14.2	8.3	8.5
γ _s (kg/m³)	1608.3	2391.6	1871.0	1889.8
Ys/Yd.opt	0.86	1.01	0.94	0.94
W _s /W _{oot}	0.45	1.29	0.96	0.95
$(\gamma_{d,oot})^2/P_{No.40}$	33188.6	304324.2	58296.3	69574.2

Table 32. Summary of the LTPP data used in the nonlinear regression study of resilient modulus for all subgrade soils data set.

All Subgrade Soils

No. of Resilient Modulus Tests:

Parameters	Min	Max	Median	Mean
P _{3/8*}	53.0	100.0	96.0	92.3
P _{No. 4}	30.0	100.0	92.0	87.4
P _{No. 40}	18.0	99.0	71.0	69.3
P _{No. 200}	1.0	99.0	35.0	40.2
% Silt	0.0	92.7	23.2	26.6
% Clay	0.0	75.5	10.3	13.5
LL	0.0	73.0	22.0	19.7
PI	0.0	46.0	5.0	7.9
Woot%	6.0	95.0	12.0	13.2
γ _{d. opt} (kg/m³)	352.4	2226.8	1890.4	1865.5
W _s %	3.0	33.2	11.6	12.7
γ _s (kg/m³)	1215.8	2160.0	1804.5	1790.3
Ys/Yd.opt	0.816	4.231	0.957	0.966
W _s /W _{opt}	0.239	1.357	0.973	0.964
(γ _{d.opt}) ² /P _{No. 40}	1380.2	275475.0	49524.3	58883.4

Table 33. Summary of the LTPP data used in the nonlinear regression study of resilient modulus for the gravel subgrade soils data set.

Gravel

No. of Resilient Modulus Tests:

Parameters	Min	Max	Median	Mean
P _{3/8"}	53.0	99.0	79.0	78.7
P _{No. 4}	30.0	99.0	65.0	66.5
P _{No. 40}	18.0	97.0	47.0	48.3
P _{No. 200}	9.5	61.1	29.4	31.8
% Silt	4.1	55.5	20.9	22.2
% Clay	0.7	32.8	8.7	9.8
LL	0.0	50.0	26.0	23.7
PI	0.0	27.0	7.0	8.2
Wopt%	7.0	26.0	11.0	12.6
γ _{d. opt} (kg/m³)	1457.8	2226.8	1978.5	1921.9
w _s %	6.8	25.5	11.4	12.3
γ _s (kg/m³)	1377.6	2160.0	1869.6	1838.3
Ys/Yd.opt	0.864	1.030	0.958	0.957
W _s /W _{opt}	0.746	1.244	0.971	0.977
(γ _{d.opt}) ² /P _{No. 40}	36839.8	275475.0	76995.7	89477.2

Table 34. Summary of the LTPP data used in the nonlinear regression study of resilient modulus for the sand subgrade soils data set.

Sand

No. of Resilient Modulus Tests:

Parameters	Min	Max	Median	Mean
P _{3/8*}	65.0	100.0	96.0	93.7
P _{No. 4}	45.0	100.0	92.0	89.4
P _{No. 40}	26.0	99.0	65.0	66.0
P _{No. 200}	1.0	74.0	24.3	25.4
% Silt	0.0	55.0	15.9	17.1
% Clay	0.0	28.0	7.1	8.3
LL	0.0	65.0	0.0	10.7
PI	0.0	26.0	0.0	3.4
W _{opt} %	6.0	33.0	11.0	11.3
γ _{d. opt} (kg/m ³)	1361.7	2194.7	1922.4	1913.3
w _s %	3.0	33.2	10.4	10.6
γ _s (kg/m³)	1249.4	2141.4	1839.5	1831.9
γ₅/γd.opt	0.865	1.056	0.957	0.957
W _s /W _{opt}	0.250	1.167	0.960	0.938
(γ _{d,opt}) ² /P _{No. 40}	22074.1	151773.2	57600.0	62402.6

Table 35. Summary of the LTPP data used in the nonlinear regression study of resilient modulus for the silt subgrade soils data set.

Silt

No. of Resilient Modulus Tests:

Parameters	Min	Max	Median	Mean
P _{3/8*}	85.0	100.0	97.0	94.6
P _{No. 4}	64.0	100.0	94.0	90.8
P _{No. 40}	50.0	99.0	82.0	81.5
P _{No. 200}	34.7	99.0	61.2	65.6
% Silt	28.0	92.7	48.9	55.6
% Clay	2.8	19.0	8.8	9.8
LL	0.0	52.0	18.0	15.3
Pl	0.0	15.0	0.0	2.6
W _{opt} %	7.0	32.0	13.0	14.1
γ _{d. opt} (kg/m³)	1409.8	2210.8	1842.3	1845.2
W _s %	6.6	33.1	12.3	14.0
γ _s (kg/m³)	1366.5	2098.3	1778.1	1775.0
Ys/Yd.opt	0.926	1.048	0.953	0.962
W _s /W _{opt}	0.771	1.182	0.985	0.983
(γ _{d.opt}) ² /P _{No. 40}	22165.4	70263.0	40329.2	43567.6

Table 36. Summary of the LTPP data used in the nonlinear regression study of resilient modulus for the clay subgrade soils data set.

Clay

No. of Resilient Modulus Tests:

Parameters	Min	Max	Median	Mean
P _{3/8} .	74.0	100.0	99.0	97.5
P _{No. 4}	54.0	100.0	98.0	95.3
P _{No. 40}	38.0	99.0	88.0	85.9
P _{No. 200}	7.0	98.4	66.6	68.5
% Silt	3.3	71.2	39.4	40.1
% Clay	3.1	75.5	26.0	28.0
LL	0.0	73.0	35.0	37.1
PI	0.0	46.0	15.5	18.7
Woot%	8.0	95.0	16.0	17.5
γ _{d. opt} (kg/m³)	352.4	2114.6	1730.2	1735.7
W ₈ %	7.9	28.7	16.8	16.9
γ _s (kg/m³)	1215.8	2027.9	1666.7	1677.3
Ys/Yd.opt	0.816	4.231	0.957	0.993
W _s /W _{opt}	0.239	1.357	1.000	1.003
(γ _{d.opt}) ² /P _{No. 40}	1380.2	63686.0	35848.6	36696.0

APPENDIX E.

RESULTS FROM NONLINEAR OPTIMIZATION REGRESSION STUDY RELATING RESILIENT MODULUS TO PHYSICAL PROPERTIES

Appendix E provides a summary from the nonlinear regression study that was used to identify the relationship or effect of physical properties of the materials on the resilient modulus by material type. Tables 37 through 49 identify the physical properties considered to be important and list the coefficients for each parameter, along with resulting statistics from the regression study for each base material and soil type.

Figures 62 through 74 provide a graphical comparison of the residuals (M_R [Predicted]- M_R [Observed]) by base material and soil type. As shown by the models, there is a modulus-dependent bias. Determining the cause of the bias was beyond the scope of work for this study. Thus, the residuals and their resilient modulus dependence are presented for the consideration of future users of the LTPP resilient modulus database and computed parameters from this study.

Table 37. Results from the nonlinear optimization regression study for all base and subbase material types combined.

Material Model		All Base	and Subbase Mater	ials Combined
		Coefficient	θ Exponent	τ _{οσ} Exponent
	Intercept	12.8140	-8.9652	-2.7735
	P _{3/8*}	0.0083		
	P _{No. 4}	-0.0139	0.0023	0.0007
	P _{No. 40}			
	P _{No. 200}	0.0036	-0.0019	-0.0054
	% Silt			
	% Clay			••
Model	LL	-0.0055	0.0041	0.0007
Parameters	PI	0.0206	-0.0168	
	W _{opt} %	44		••
	γ _{d, opt} (kg/m³)	-0.0056	0.0042	0.0010
	w _s %	-0.0431		
	γ _s (kg/m³)	0.0054	-0.0045	-0.0005
	Υ∍ ^l Υd.opt	-10.9427	9.7625	1.7644
	W _s /W _{opt}	0.1150	0.1251	-0.0969
	$(\gamma_{d,opt})^2/P_{No.40}$	-8.14E-07	4.29E-07	
	MSE		1871.79	
	S _e		43.264	
Statistics	S _v		75.312	
	s₀/s _v		0.5745	
	R²			
	No. of Points		6329	

Table 38. Results from the nonlinear optimization regression study for the LTPP base and subbase material code data set 302 – uncrushed gravel.

Material		LTPP Ba	LTPP Base and Subbase Material Code 302: Uncrushed Gravel	
Model		Coefficient	θ Exponent	τ _{oct} Exponent
	Intercept	-1.8961	0.4960	-0.5979
	P _{3/8"}			••
	P _{No. 4}			
	P _{No. 40}			••
	P _{No. 200}		-0.0074	
	% Silt			
	% Clay			
Model Parameters	LL			
model i didiliotore	Pl		**	
•	W _{opt} %			0.0349
	γ _{d, opt} (kg/m³)			0.0004
	w _s %			
	γ _s (kg/m³)	0.0014	-0.0007	
	γs∕γd.opt		1.6972	
	W _s /W _{opt}	-0.1184	0.1199	-0.5166
	$(\gamma_{d,opt})^2/P_{No, 40}$			
	MSE		475.85	
	S _e		21.814	
Statistics	S _V		63.045	
Statistics	s₀/s _v		0.346	
	R ²			
	No. of Points		461	

Table 39. Results from the nonlinear optimization regression study for the LTPP base and subbase material code data set 303 – crushed stone.

Material		LTPP Base and Subbase Material Code 303: Crushed Stone		
	Model	Coefficient	θ Exponent	τ _{oct} Exponent
	Intercept	0.7632	2.2159	-1.1720
	P _{3/8*}	0.0084	-0.0016	
	P _{No. 4}			••
	P _{No. 40}			
	P _{No. 200}			
	% Silt			••
	% Clay		••	
Model Parameters	LL	0.0088	0.0008	-0.0082
noder r dramotore	Pl			
	W _{opt} %	-0.0371	-0.0380	-0.0014
	γ _{d. opt} (kg/m³)	-0.0001	-0.0006	0.0005
	W _s %			
	γ _s (kg/m³)			
	Ys/Yd.opt			
	w _s /w _{opt}		••	
	$(\gamma_{d.opt})^2/P_{No.40}$		2.4E-07	
	MSE		1699.64	
	S _e		41.227	
Statistics	S _V		87.416	
Statistics	s _e /s _v		0.4716	
	R ²			
	No. of Points		853	

Table 40. Results from the nonlinear optimization regression study for the LTPP base and subbase material code data set 304 – crushed gravel.

Material		LTPP Base and Subbase Material Code 304: Crushed Gravel		
Мо	del	Coefficient	θ Exponent	$ au_{ m oct}$ Exponent
	Intercept	-0.8292	4.9555	-3.5141
	P _{3/8"}	-0.0065		
	P _{No. 4}			
	P _{No. 40}			
·	P _{No. 200}			**
	% Silt		7.	
	% Clay			==
Model Parameters	LL	0.0114	-0.0057	
Woder rarameters	PI	0.0004	-0.0075	
	W _{opt} %	-0.0187		
	γ _{d. oot} (kg/m³)			
	W _s %	0.0036	-0.0470	••
	γ _s (kg/m³)	0.0013	-0.0022	0.0016
	γ₅/γd.opt			
·	W _s /W _{opt}			
	$(\gamma_{d,opt})^2/P_{No.40}$	-2.6E-06	2.8E-06	**
	MSE		854.398	
	Se		29.230	
Statistics	S _Y		66.743	-
Statistics	s₀/s _v		0.4380	
	R ²			
·	No. of Points		404	

Table 41. Results from the nonlinear optimization regression study for the LTPP base and subbase material code data set 306 – sand.

Material		LTPP Base and Subbase Material Code 306: Sand		
M	Model		θ Exponent	$ au_{ m oct}$ Exponent
	Intercept	-0.2786	1.1148	-0.4508
	P _{3/8"}	0.0097	-0.0053	0.0029
	P _{No. 4}			
	P _{No. 40}			
	P _{No. 200}			
	% Silt			
	% Clay			
Model Parameters	LL	0.0219	-0.0095	-0.0185
Widder Farantielers	PI	-0.0737	0.0325	0.0798
	W _{opt} %			
	γ _{d, opt} (kg/m³)			
	w _s %		- -	
	γ _s (kg/m³)			
·	Ys/Yd.opt			
	W _s /W _{opt}			
	(Yd.opt) ² /P _{No. 40}	1.8E-07	7.2E-07	
	MSE		512.674	
	S _e		22.642	
Statistics	S _V		51.605	
Statistics	s₀/s _v		0.4388	
	R ²			
·	No. of Points	519		

Table 42. Results from the nonlinear optimization regression study for the LTPP base and subbase material code data set 307 – fine-grained soil-aggregate mixture.

Material		LTPP Base and Subbase Material Code 307: Fine-Grained Soil-Aggregate Mix Recalibrated Coefficient with M, Equation		
	Intercept	-0.7668	0.4951	0.9303
	P _{3/8*}			0.0293
	P _{No. 4}	0.0051	-0.0141	
	P _{No. 40}	44.		
	P _{No. 200}	0.0128	-0.0061	
	% Silt			
	% Clay	••		
Model Parameters	LL	0.0030		0.0036
·	PI			
	W _{opt} %	-0.0510		
	γ _{d, opt} (kg/m³)			
	W _s %			
	γ _s (kg/m³)			••
	Ys/Yd.opt	1.1729	1.3941	-3.8903
	W _s /W _{opt}	••	••	
	$(\gamma_{d,opt})^2/P_{No.40}$			
	MSE		588.20	
	S _e		24.253	· · · · · · · · · · · · · · · · · · ·
Statistics	S _v		49.371	
J.2.1.51100	s _e /s _v		0.4912	
	R ²			
	No. of Points	390		

Table 43. Results from the nonlinear optimization regression study for the LTPP base and subbase material code data set 308 – coarse-grained soil-aggregate mixture.

Material		Base and Subbase Material 308: Coarse-Grained Soil-Aggregate Mixture		
M	odel	Coefficient $θ$ Exponent $τ_{oct}$ Expone		τ _{oct} Exponent
	Intercept	-0.5856	0.7833	-0.1906
	P _{3/8} .	0.0130		
	P _{No. 4}	-0.0174		
	P _{No. 40}			
	P _{No. 200}	0.0027	-0.0060	-0.0026
	% Silt			
	% Clay			
Model	LL			
Parameters	Pl	0.0149	-0.0081	
	W _{opt} %			
	γ _{d, opt} (kg/m³)	1.6E-06	0.0001	
	w _s %	-0.0426		
	γ _s (kg/m³)			
	Υs∕Yd.opt	1.6456		
	W _s /W _{opt}	0.3932	-0.1483	
	$(\gamma_{d,opt})^2/P_{No.40}$	-8.2E-07	-2.7E-07	8.1E-07
	MSE		1883.89	
	S _e		43.404	
Statistics	S _v		80.186	
Statistics	S _e /S _V		0.5413	
	R ²			
	No. of Points	2323		

Table 44. Results from the nonlinear optimization regression study for the LTPP base and subbase material code data set 309 – fine-grained soil.

Material		LTPP Base and Subbase Material Code 309: Fine-Grained Soil		
	Model	Coefficient	θ Exponent	τ _{oct} Exponent
	Intercept	0.8409	0.6668	-0.1667
	P _{3/8"}			
	P _{No. 4}			**
-	P _{No. 40}	0.0004	-0.0007	· ••
•	P _{No. 200}			
	% Silt			
Model	% Clay			
Parameters	LL			
	Pl	0.0161	-0.0139	-0.0207
	W _{opt} %			
	γ _{d. opt} (kg/m³)	••		
	W _s %			
	γ _s (kg/m³)			
	Ys/Yd.opt			
	W _s /W _{opt}			
	$(\gamma_{d,opt})^2/P_{No. 40}$	••		••
	MSE		1167.03	
	Se		34.162	
Statistics	S _V		62.8	
Statistics	s₀/s _v		0.5440	
	R ²			
	No. of Points		1079	***************************************

Table 45. Results from the nonlinear optimization regression study for the combined subgrade soil data set.

Material		All Subgrade Soils Combined		
	Model		θ Exponent	$ au_{ m oct}$ Exponent
	Intercept	0.9848	0.4808	9.6691
	P _{3/8*}	-0.0050	-0.0037	-0.0302
	P _{No. 4}		0.0062	0.0065
	P _{No. 40}	0.0011	-0.0016	0.0192
	P _{No. 200}		-0.0008	-0.0115
	% Silt			
	% Clay	0.0085	-0.0018	0.0040
Model	LL	0.0089	-0.0078	0.0075
Parameters	Pl	-0.0094	0.0019	0.0401
	W _{opt} %			0.0020
	γ _{d, opt} (kg/m ³)			-0.0039
	w _s %	-0.0235	0.0111	-0.2750
	γ _s (kg/m³)			
	Ys/Yd.opt		-0.1232	-0.7177
	W _s /W _{opt}	0.3290	-0.0009	1.0262
	(γ _{d,opt}) ² /P _{No. 40}			5.28E-06
	MSE		449.184	
	S _e		21.194	
Statistics	S _v		26.574	
Statistics	s _e /s _v		0.7975	
	R ²		u	
	No. of Points	6022		

Table 46. Results from the nonlinear optimization regression study for the LTPP gravel subgrade soil data set.

Material Model		Gravel Subgrade Soils		
		Coefficient	θ Exponent	$ au_{ m oct}$ Exponent
	Intercept	1.3429	0.3311	1.5167
	P _{3/8} .	-0.0051	0.0010	-0.0302
	P _{No. 4}			
	P _{No. 40}	••		
	P _{No. 200}			
	% Silt			••
	% Clay	0.0124	-0.0019	0.0435
Model	LL	0.0053	-0.0050	0.0626
Parameters	PI		-0.0072	0.0377
	W _{opt} %	••		
	γ _{d, opt} (kg/m ³)			4-
	W _s %	-0.0231	0.0093	-0.2353
	γ _s (kg/m³)	••		
	Ys∕Yd.opt			
	W _s /W _{opt}			
	$(\gamma_{d,opt})^2/P_{No.40}$			
	MSE		301.322	
	Se	17.359		
Statistics	S _v	26.812		
Jianshos	S _e /S _v		0.6474	
	R²			
	No. of Points		957	

Table 47. Results from the nonlinear optimization regression study for the LTPP sand subgrade soil data set.

Material Model		Sand Subgrade Soils		
		Coefficient	θ Exponent	$ au_{ m oct}$ Exponent
	Intercept	3.2868	0.5670	-3.5677
	P _{3/8"}	-0.0412	0.0045	0.1142
	P _{No. 4}	0.0267	-2.98E-05	-0.0839
	P _{No. 40}			
	P _{No. 200}			-0.1249
	% Silt		-0.0043	0.1030
	% Clay	0.0137	-0.0102	0.1191
Model	LL	0.0083	-0.0041	-0.0069
Parameters	PI	••		**
	W _{opt} %	-0.0379	0.0014	-0.0103
	γ _{d, opt} (kg/m³)			
	W _s %			
	γ _s (kg/m³)	-0.0004	-3.41E-05	-0.0017
	Ys/Yd.opt		-0.4582	4.3177
	W _s /W _{opt}		0.1779	-1.1095
	(γ _{d,opt}) ² /P _{No. 40}			-
	MSE		357.7155648	
	Se		18.91337	
Statistics	s _v		24.787	
	s _e /s _v		0.7630	
	R ²			
	No. of Points		3117	

Table 48. Results from the nonlinear optimization regression study for the LTPP silt subgrade soil data set.

Material Model		Silt Subgrade Soils		
		Coefficient	θ Exponent	τ _{oct} Exponent
	Intercept	1.0480	0.5097	-0.2218
	P _{3/8} .			
·	P _{No. 4}			**
	P _{No. 40}			
	P _{No. 200}		**	40.50
·	% Silt			0.0047
	% Clay	0.0177		
Model	LL			••
Parameters	PI	0.0279	-0.0286	0.0849
	W _{opt} %			••
	$\gamma_{\rm d. opt}$ (kg/m ³)			
	W ₈ %	-0.0370		-0.1399
	γ _s (kg/m³)		••	
	Ys/Yd.opt	••		••
	W _s /W _{opt}		••	
	(γ _{d.opt}) ² /P _{No. 40}			**
	MSE		193.03	
	Se		13.894	· · · · · · · · · · · · · · · · · · ·
Statistics	S _V		24.714	
0.00.00	s _e /s _v		0.5622	
	R ²			
	No. of Points		464	

Table 49. Results from the nonlinear optimization regression study for the LTPP clay subgrade soil data set.

Material		Clay Subgrade Soils		
N	1 odel	Coefficient	θ Exponent	$τ_{oct}$ Exponent
	Intercept	1.3577	0.5193	1.4258
	P _{3/8} •			
	P _{No. 4}		-0.0073	-0.0288
	P _{No. 40}		0.0095	0.0303
	P _{No. 200}		-0.0027	-0.0521
	% Silt			0.0251
	% Clay	0.0106		••
Model	LL		-0.0030	0.0535
Parameters	Pl	••		
	W _{opt} %		-0.0049	-0.0672
	γ _{d, opt} (kg/m³)	••		-0.0026
	W _s %	-0.0437		
	γ _s (kg/m³)			0.0025
	Ys/Yd.opt			
	W _s /W _{opt}			-0.6055
	$(\gamma_{d.opt})^2/P_{No.40}$			••
	MSE		557.918	
	S _e		23.620	
Statistics	S _y		29.224	
Gianglios	s₀/s _v	-	0.8082	
	R²		4.4	
	No. of Points	1484		

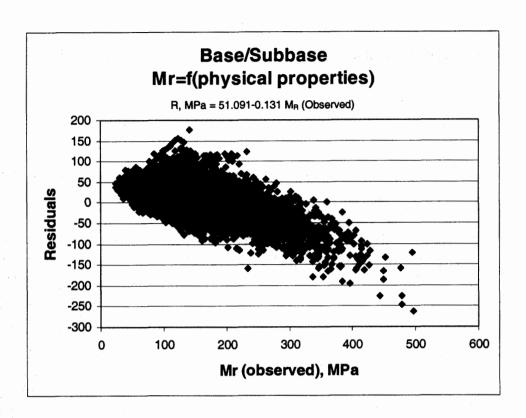


Figure 62. Residuals, R, for the combined resilient modulus prediction equation for all base and subbase materials.

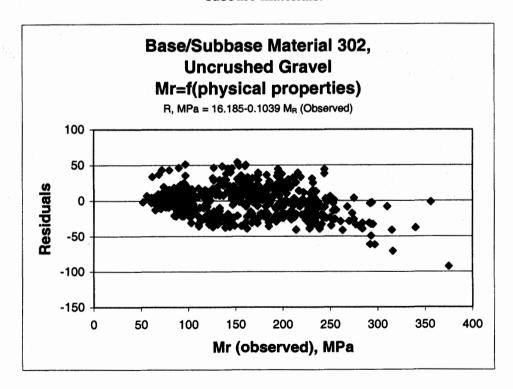


Figure 63. Residuals, R, for the uncrushed gravel (LTPP material code 302) resilient modulus prediction equation.

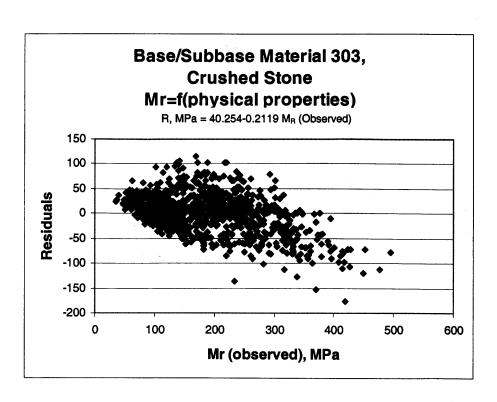


Figure 64. Residuals, R, for the crushed stone (LTPP material code 303) resilient modulus prediction equation.

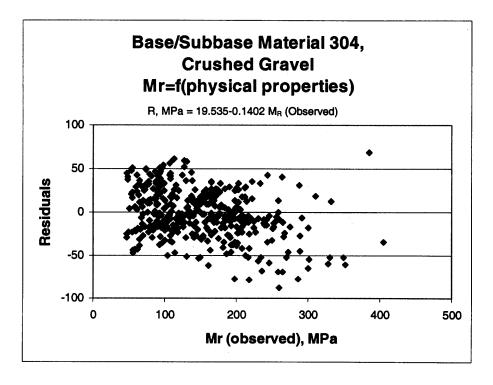


Figure 65. Residuals, R, for the crushed gravel (LTPP material code 304) resilient modulus prediction equation.

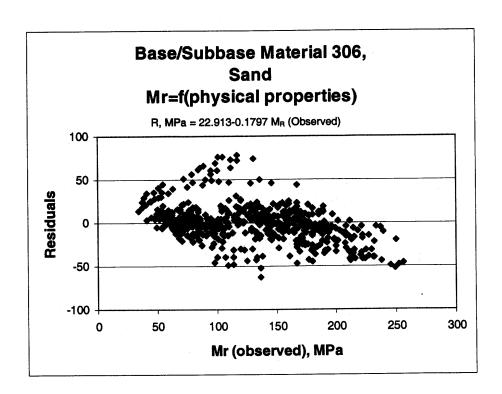


Figure 66. Residuals, R, for the sand (LTPP material code 306) resilient modulus prediction equation.

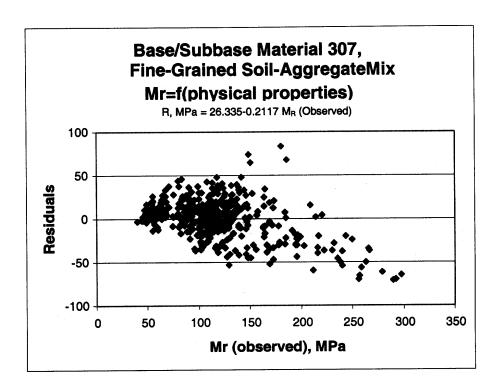


Figure 67. Residuals, R, for the fine-grained soil-aggregate mixture (LTPP material code 307) resilient modulus prediction equation.

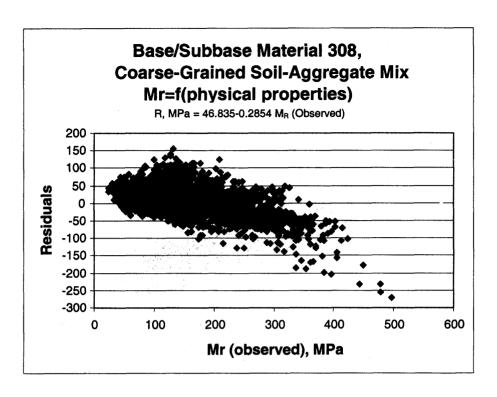


Figure 68. Residuals, R, for the coarse-grained soil-aggregate mixture (LTPP material, code 308) resilient modulus prediction equation.

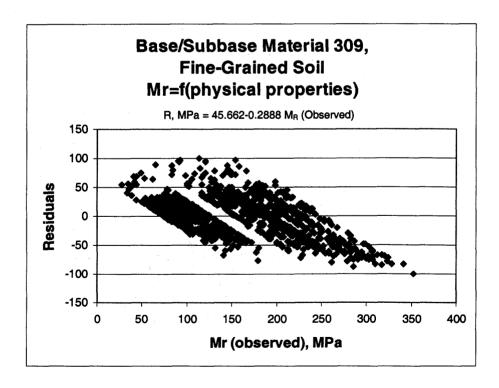


Figure 69. Residuals, R, for the fine-grained soil (LTPP material code 309) resilient modulus prediction equation.

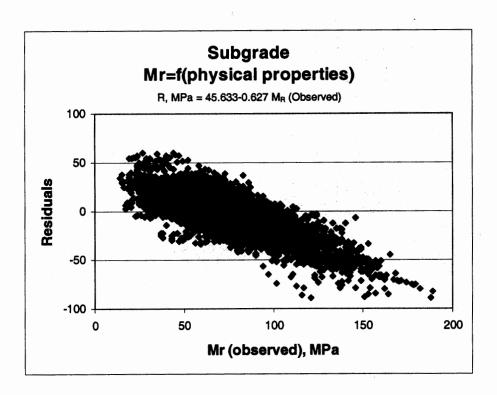


Figure 70. Residuals, R, for the resilient modulus prediction equation for all subgrade soils.

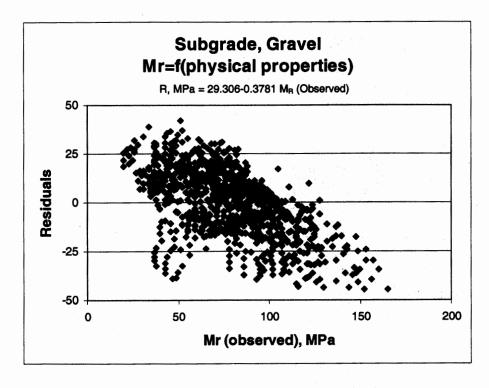


Figure 71. Residuals, R, for the gravel soils resilient modulus prediction equation.

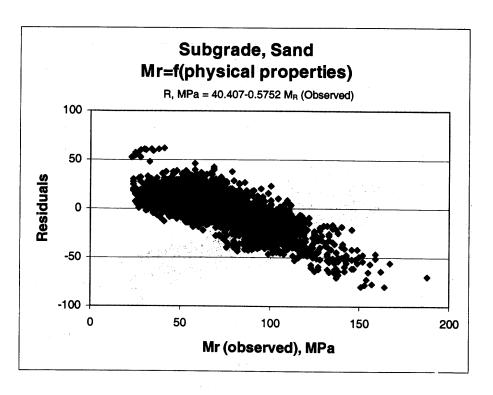


Figure 72. Residuals, R, for the sand soils resilient modulus prediction equation.

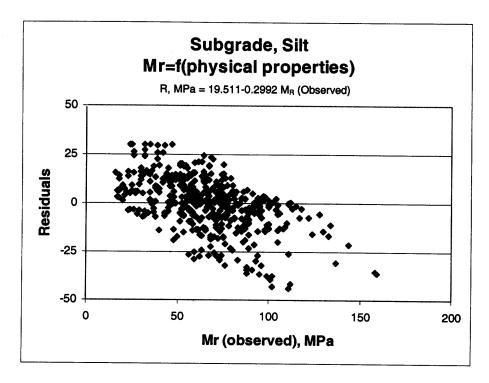


Figure 73. Residuals, R, for the silt soils resilient modulus prediction equation.

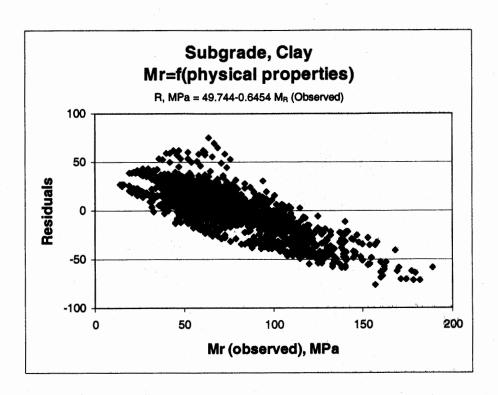


Figure 74. Residuals, R, for the clay soils resilient modulus prediction equation.

REFERENCES

- 1. American Association of State Highway and Transportation Officials, AASHTO Guide for Design of Pavement Structures, Washington, D.C., 1993.
- 2. Alavi, S.T., T. Merport, J. Wilson, A. Groeger, and A. Lopez, LTPP Materials Characterization Program: Resilient Modulus of Unbound Materials (LTPP Protocol P46) Laboratory Startup and Quality Control Procedure, Report No. FHWA-RD-96-176, Federal Highway Administration, U.S. Department of Transportation, Washington, D.C., January 1997.
- 3. Von Quintus, H. and B. Killingsworth, Analyses Relating to Pavement Material Characterizations and Their Effects on Pavement Performance, Report No. FHWA-RD-97-085, Federal Highway Administration, U.S. Department of Transportation, Washington, D.C., 1998.
- 4. "Unbound Materials Characterization Utilizing LTPP Data," Unpublished Interim Task Report, NCHRP Project 1-37A, Development of the 2002 Design Guide for the Design of New and Rehabilitated Pavement Structures, National Cooperative Highway Research Program, National Research Council, Washington, D.C., August 2000.
- 5. Mason, Robert L., Richard F. Gunst, and James L. Hess, Statistical Design and Analysis of Experiments With Applications to Engineering and Science, John Wiley & Sons, New York City, N.Y., 1989.
- 6. Darter, Michael I., Harold L. Von Quintus, Emmanuel B. Owusu-Antwi, and Jane Jiang, Systems for Design of Highway Pavements, Final Report for NCHRP Project 1-32, National Cooperative Highway Research Program, National Research Council, Washington, D.C., May 1997.
- 7. Santha, B. Lanka, Resilient Modulus of Subgrade Soils: Comparison of Two Constitutive Equations, TRR No. 1462, Transportation Research Board, National Research Council, Washington, D.C., 1994.